
# **SERVICE MANUAL**

SE00AK44CHA00 Issued: 9th March 2004

## PAL B/G, I / SECAM L/L', B/G, D/K SYSTEM COLOUR TELEVISION



SHARP

# CHASSIS AK-44

In the interests of user safety (required by safety regulations in some countries) the set should be restored to its original condition and only parts identical to those specified should be used.

## CONTENTS

| TABLE OF CONTENTS                       |    |
|-----------------------------------------|----|
| INTRODUCTION                            | 6  |
| CIRCUIT DESCRIPTIONS                    | 6  |
| INTEGRATED CIRCUIT DESCRIPTIONS         |    |
| BLOCK DIAGRAM                           |    |
| SERVICE MODE ADJUSTMENTS                |    |
| HOTEL MODE FUNCTIONS                    |    |
| CIRCUIT DIAGRAMS                        | 31 |
| HOW TO UPDATE THE TECHNICAL INFORMATION |    |
|                                         |    |

## SHARP CORPORATION

This document has been published to be used for after sales service only.

Г

| SERVICE MANUAL UPDATE LOG SHEET                |                  |          |          |                                 |  |  |  |
|------------------------------------------------|------------------|----------|----------|---------------------------------|--|--|--|
| Technical Report No.<br>Technical Bulletin No. | Cause / Solution | Part No. | Page No. | Application<br>Data /Serial No. |  |  |  |
|                                                |                  |          |          |                                 |  |  |  |
|                                                |                  |          |          |                                 |  |  |  |
|                                                |                  |          |          |                                 |  |  |  |
|                                                |                  |          |          |                                 |  |  |  |
|                                                |                  |          |          |                                 |  |  |  |
|                                                |                  |          |          |                                 |  |  |  |
|                                                |                  |          |          |                                 |  |  |  |
|                                                |                  |          |          |                                 |  |  |  |
|                                                |                  |          |          |                                 |  |  |  |
|                                                |                  |          |          |                                 |  |  |  |
|                                                |                  |          |          |                                 |  |  |  |
|                                                |                  |          |          |                                 |  |  |  |
|                                                |                  |          |          |                                 |  |  |  |
|                                                |                  |          |          |                                 |  |  |  |
|                                                |                  |          |          |                                 |  |  |  |

Use this page to keep any special servicing information as Technical Report (Bulletin), Technical Information, etc. If only part number changes are required, just change part number directly the part number in the Parts Listing Section. If you need more information, please refer to the Technical Report (Bulletin).

## TABLE OF CONTENTS

| SAFETY PRECAUTIONS                                     |    |
|--------------------------------------------------------|----|
| TV set switched off                                    | 5  |
| Measurements                                           | 5  |
| PERI-TV SOCKET                                         | F  |
|                                                        |    |
| SCART 1                                                | 5  |
| 1. INTRODUCTION                                        | 6  |
| CIRCUIT DESCRIPTIONS                                   | 6  |
| 2. SMALL SIGNAL PART WITH STV2248                      |    |
| 2.1 Vision IF amplifier                                |    |
| 2.2 QSS Sound circuit (QSS versions)                   |    |
| 2.3 AM Demodulator                                     |    |
| 2.4 FM demodulator and audio amplifier (mono versions) |    |
| 2.5 Video switch                                       |    |
| 2.6 Synchronisation circuit                            | 6  |
| 2.7 Chroma and luminance processing                    | 7  |
| 2.8 RGB output circuit                                 | 7  |
| 2.9 µ-Controller                                       |    |
| 2.9.1 Controls                                         |    |
| 2.9.2 Teletext                                         |    |
| 2.10 Video Path                                        |    |
| 2.11 Sound Path                                        | 9  |
| 2.12 AV Input Signal Path                              | 9  |
| 2.12.1 Video and Sound                                 | 9  |
| 2.12.2 RGB                                             | 9  |
| 3. TUNER                                               | 0  |
|                                                        |    |
| 4. DIGITAL TV SOUND PROCESSOR MSP34X0                  |    |
| 5. SOUND OUTPUT STAGE TDA7266L/TDA7266                 |    |
| 6. VERTICAL OUTPUT STAGE WITH TDA8174A                 | 10 |
|                                                        |    |
| 7. VIDEO OUTPUT AMPLIFIER TDA6107                      |    |
| 8. POWER SUPPLY (SMPS)                                 |    |
| 8.1 Start Up                                           |    |
| 8.2 Voltage Regulation                                 |    |
| 8.3 Voltage Protection                                 |    |
| 8.4 Current Regulation                                 |    |
| 8.5 Standby operation                                  |    |
| 8.6 Mode transition                                    |    |
| 8.7 SMPS Switch Off                                    |    |
| 9. LINE CIRCUIT                                        |    |
| 9.1 B.C.L. Circuit (Beam Current Limiter)              |    |
| 10. SERIAL ACCESS CMOS 8K EEPROM 24C08                 |    |
| 11. SAW FILTERS                                        |    |
| 12. IC DESCRIPTIONS AND INTERNAL BLOCK DIAGRAM         |    |
|                                                        |    |
| ST92195                                                |    |
| STV224X                                                |    |
| UV1315, UV1316, UV1336<br>TDA7266/TDA7266L             |    |
| TDA7266/TDA7266L<br>TDA8174                            |    |
| TDA8174<br>TDA6107                                     | -  |
| MC44608                                                | -  |
| MC44008<br>MSP34X0G                                    |    |
| 24C08                                                  |    |
|                                                        |    |

| TDA1308<br>SAW FILTERS                              |    |
|-----------------------------------------------------|----|
| 13. GENERAL BLOCK DIAGRAM of 11AK44                 |    |
| 14. SERVICE MENU                                    |    |
| 14.1 Service Menu entrance                          |    |
| 14.2 Service Adjustments                            |    |
| 14.3 Using Coloured Buttons                         |    |
| 14.3.1 AVL                                          |    |
| 14.3.2 Geometry Menu                                |    |
| 14.3.2.1 Geometry Table                             |    |
| 14.3.2.1 Geometry Table                             |    |
| 14.3.3 Screen Adjustment                            |    |
| 14.3.4 IF Adjustment                                |    |
| 14.4 Auto Programming System Set Up                 |    |
| 15. OPTIONS                                         | 27 |
| 15.1 Service Registers updating regarding the Tuner |    |
| 15.2 Registers details                              |    |
| 16. LANGUAGES                                       |    |
| 17. HOTEL MODE FUNCTIONS                            |    |
| 18. SCHEMATIC DIAGRAMS                              |    |
| 19. HOW TO UPDATE THE TECHNICAL INFORMATION         |    |

## SAFETY PRECAUTIONS

The service of this TV set must be carried out by qualified persons only. Components marked with the warning symbol on the circuit diagram or on the Parts Listing, are critical for safety and must only be replaced with an identical component.

- Power resistor and fused resistors must be mounted in an identical manner to the original component.
- When servicing this TV, check that the EHT does not exceed 26kV.

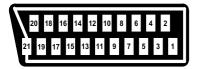
TV set switched off:

Make short-circuit between HV-CRT clip and CRT ground layer.

Short C809 before changing IC800 and IC801 or other components in primary side of the SMPS part.

Do not try to test Q801 gate source junction if C809 is charged, your meter will turn on the transistor which will discharge the capacitor resulting in a drain source short circuit. Do not discharge C809 quickly with a screwdriver etc. The very high current produced can damage the internal connections of the capacitor causing failure at a later date. Remember when checking voltages to use a return path on the same side of TR802 for the Voltmeter earth to obtain the correct readings.

Measurements:


Voltage readings and oscilloscope traces are measured under the following conditions: Antenna signal's level is 60dB at the color bar pattern from the TV pattern generator. (100% white, 75% color saturation) Brightness, contrast, and color are adjusted for normal picture performance. Mains supply, 220VAC, 50Hz.

#### DO NOT CHANGE ANY MODULE UNLESS THE SET IS SWITCHED OFF

The mains supply part of the switch mode power supply's transformer is live. Use an isolating transformer.

The receiver complies with the safety requirements.

## **PERI-TV SOCKET**



SCART PINING 1 Audio right output 0.5 Vrms / 1K 2 Audio right input 0.5 Vrms / 10K 3 Audio left output 0.5 Vrms / 1K 4 Ground AF 5 Ground Blue 6 Audio left input 0.5 Vrms / 10K 7 Blue input 0.7 Vpp / 75 ohm 8 AV switching input 0-12 VDC / 10 K 9 Ground Green 10 -11 Green input 0.7 Vpp / 75 ohm 12 -13 Ground Red 14 Ground Blanking 15 Red input 0.7 Vpp / 75 ohm 16 Blanking input 0-0.4 VDC, 1-3 VDC / 75 Ohm 17 Ground CVBS output 18 Ground CVBS input 19 CVBS output 1 Vpp / 75 ohm 20 CVBS input 1 Vpp / 75 ohm 21 Ground

## **1. INTRODUCTION**

11AK44 is a 90° chassis capable of driving 20"/21" tubes at the appropriate currents. The chassis is capable of operating in PAL, SECAM and NTSC standards. The sound system is capable of giving 4 watts RMS output into a load of 16 ohms. 7 page SIMPLETEXT is provided. The chassis is equipped with a single-deck 21 pin Scart connector.

## CIRCUIT DESCRIPTIONS 2. SMALL SIGNAL PART WITH STV2248

STV2248 video processor is essential for realizing all small signal functions for a color TV receiver.

#### 2.1 Vision IF amplifier

The vision IF amplifier can demodulate signals with positive and negative modulation. The PLL demodulator is completely alignment-free. Although the VCO (Toko-coil) of the PLL circuit is external, yet the frequency is fixed to the required value by the original manufacturer thus the Toko-coil does not need to be adjusted manually. The setting of the various frequencies (38.9 or 33,8 MHz) can be made via changing the coil itself.

#### 2.2 QSS Sound circuit (QSS versions)

The sound IF amplifier is similar to the vision IF amplifier and has an external AGC de-coupling capacitor. The single reference QSS mixer is realised by a multiplier. In this multiplier the SIF signal is converted to the inter-carrier frequency by mixing it with the regenerated picture carrier from the VCO. The mixer output signal is supplied to the output via a high-pass filter for attenuation of the residual video signals. With this system a high performance hi-fi stereo sound processing can be achieved. The AM sound demodulator is realised by a multiplier. The modulated

sound IF signal is multiplied in phase with the limited SIF signal. The demodulator output signal is supplied to the output via a low-pass filter for attenuation of the carrier harmonics. The AM signal is supplied to the output via the volume control.

#### 2.3 AM Demodulator

The AM demodulated signal results from multiplying the input signal by itself, it is available on AM/FM output.

#### 2.4 FM demodulator and audio amplifier (mono versions)

The FM demodulator is realized as narrow-band PLL with external loop filter, which provides the necessary selectivity without using an external band-pass filter. To obtain a good selectivity a linear phase detector and constant input signal amplitude are required. For this reason the inter-carrier signal is internally supplied to the demodulator via a gain controlled amplifier and AGC circuit. The nominal frequency of the demodulator is tuned to the required frequency (4.5/5.5/6.0/6.5 MHz) by means of a calibration circuit that uses the clock frequency of the  $\mu$ -controller/Teletext decoder as a reference. The setting to the wanted frequency is realized by means of the software. It can be read whether the PLL frequency is inside or outside the window and whether the PLL is in lock or not.

With this information it is possible to make an automatic search system for the incoming sound frequency. This is realized by means of a software loop that alternate the demodulator to various frequencies, then select the frequency on which a lock condition has been found. De-emphasis output signal amplitude is independent of the TV standard and has the same value for a frequency

deviation of  $\pm 25$  kHz at the 4.5 MHz standard and for a deviation of  $\pm 50$  kHz for the other standards. When the IF circuit is switched to positive modulation the internal signal on deemphasis pin is automatically muted. The audio control circuit contains an audio switch and volume control. In the mono inter-carrier sound versions the Automatic Volume Leveling (AVL) function can be activated. The pin to which the external capacitor has to be connected depends on the IC version. For the 90° types the capacitor is connected to the EW output pin (pin 20). When the AVL is active it automatically stabilizes the audio output signal to a certain level.

#### 2.5 Video switching

The video processor (STV2248C) has three CVBS inputs and two RGB inputs. The first CVBS input is used for external CVBS from SCART 1, the second is used for external CVBS from FAV, and the third one is used for internal video. The selection between both external video inputs signals is realized by means of software and hardware switches.

#### 2.6 Synchronization circuit

The video processor (STV224X) performs the horizontal and vertical processing. The external horizontal deflection circuit is controlled via the Horizontal output pulse (HOUT). The vertical scanning is performed through an external ramp generator and a vertical power amplifier IC controlled by the Vertical output pulse (VOUT). The main components of the deflection circuit are:

• PLL1: the first phase locked loop that locks the internal line frequency reference on the CVBS input signal. It is

composed of an integrated VCO (12 MHz) that requires the chroma Reference frequency (4.43 MHz or 3.58 MHz crystal oscillator reference signal), a divider by 768, a line decoder, and a phase comparator.

PLL2: The second phase locked loop that controls the phase of the horizontal output (Compensation of horizontal deflection transistor storage time variation). Also the horizontal position adjustment is also performed in PLL2.
A vertical pulse extractor

• A vertical pulse extractor.

• A vertical countdown system to generate all vertical windows (vertical synchronization window, frame blanking pulses, 50/60 Hz identification window...).

- Automatic identification of 50/60 Hz scanning.
- PLL1 time constant control.
- Noise detector, video identification circuits, and horizontal coincidence detector.
- Vertical output stage including de-interlace function, vertical position control.
- Vertical amplitude control voltage output (combined with chroma reference output and Xtal 1 indication).

#### 2.7 Chroma and luminance processing

The chroma decoder is able to demodulate PAL, NTSC and SECAM signals.

The decoder dedicated to PAL and NTSC sub-carrier is based on a synchronous demodulator, and an Xtal PLL locked on the phase reference signal (burst).

The SECAM demodulation is based on a PLL with automatic calibration loop.

The color standard identification is based on the burst recognition.

Automatic and forced modes can be selected through the I2C bus.

NTSC tint, and auto flesh are controlled through I2C bus.

Xtal PLL can handle up to 3 crystals to work in PAL M, PAL N and NTSC M for South America.

ACC an ACC overload control the chroma sub-carrier amplitude within 26dB range. Both ACCs are based on digital systems and do not need external capacitor.

All chroma filters are fully integrated and tuned via a PLL locked on Xtal VCO signal.

A second PLL is used for accurate fine-tuning of the SECAM bell filter. This tuning is achieved during the frame blanking. An external capacitor memorizes the bell filter tuning voltage.

A base-band chroma delay-line rebuilds the missing color line in SECAM and removes transmission phase errors in PAL.

The base-band chroma delay line is clocked with 6 MHz signal provided by the horizontal scanning VCO.

The luminance processor is composed of a chroma trap filter, a luminance delay line, a peaking function with noise coring feature, a black stretch circuit.

Trap filter and luminance delay lines are achieved with the use of bi-quad integrated filters, autoaligned via a master filter phase locked loop.

#### 2.8 RGB output circuit

The video processor performs the R, G, B processing.

There are three sources:

- 1. Y, U, V inputs (coming from luma part (Y output), and chroma decoder outputs (R-Y, B-Y outputs).
- 2. External R, G, B inputs from SCART (converted internally in Y, U, V), with also the possibility to input YUV signals from a DVD player, (YUV specification is Y= 0.7 V PP, U= 0.7 V PP, V = 0.7 V PP for 100% color bar).
- 3. Internal R, G, B inputs (for OSD and Teletext display)

The main functions of the video part are:

- Y, U, V inputs with integrated clamp loop, allowing a DC link with YUV outputs,
- External RGB inputs (RGB to YUV conversion), or direct YUV inputs,
- Y, U, V switches,
- Contrast, saturation, brightness controls,
- YUV to RGB matrix,
- OSD RGB input stages (with contrast control),
- RGB switches,
- APR function,
- DC adjustment of red and green channels,
- Drive adjustments (R, G, B gain),
- Digital automatic cut-off loop control,
- Manual cut-off capability with I2C adjustments,
- Half tone, oversize blanking, external insertion detection, blue screen,
- Blanking control and RGB output stages.

#### 2.9 µ-Controller

The ST92195 is the micro-controller, which is required for a color TV receiver. ST92195D1 is the version with one page Teletext and ST92195D7 is the one with 7 page Teletext. The IC has the supply voltage of 5 V and they are mounted in PSDIP package with 56 pins.

 $\mu\text{-}Controller$  has the following features

- Display of the program number, channel number, TV Standard, analogue values, sleep timer, parental control and mute is done by OSD
- Single LED for stand-by and on mode indication
- System configuration with service mode
- 3 level logic output for SECAM and Tuner band switching

IC 501 controls all the functions of the receiver operated by the remote control and the front panel customer controls. It produces the on screen graphics, operates tuning, customers controls and engineering controls, and also incorporates all of the Teletext functions. It also controls the video processor, the audio processor, and the tuner. The circuits just mentioned are controlled via the I<sup>2</sup>C bus. Also IC501 controls the video source switching, vertical position adjustment and the vertical linearity adjustment via its ports.

An external 8K EEPROM is used by the micro. The EEPROM comes fully programmed. The main clock oscillator is 4.0 MHz crystal X501 on pins 50 and 51. Reset is provided on pin 2 via Q504. On switching on pin 2 becomes high and the controller gets reset which stays valid till a low signal comes on that pin.

#### 2.9.1 Controls

Command information from the infrared remote controller is fed through the sensor IC502 to pin 1 of the microprocessor. Operation of the customer front panel keys is detected by pin 8 that is an ADC (analogue to digital converter). Pressing a switch will connect the 5V to the ground through a particular resistor that determines the value of the voltage on pin8 at that instant. This obtained value is comprehended by the micro and the corresponding operation is performed. Refer to the following table:

| Button | Theoretical voltage | Resistance |
|--------|---------------------|------------|
| P+     | 3.0V                | R502       |
| P-     | 4.0V                | R503       |
| V+     | 2.0V                | R504       |
| V-     | 1.5V                | R506       |
| Menu   | 1.0V                | R505       |

IC501 automatically switches from TV mode to AV1 by detecting the signal from or pin8 at the Scart connector, through it 56 pins. The picture mode is determined according to the following table:

| Direct Voltage | Picture mode |
|----------------|--------------|
| 0 ~ 2 V        | TV           |
| 4,5 ~ 7 V      | 16 :9        |
| 9,5 ~ 12 V     | 4 :3         |

#### 2.9.2 Teletext

The microprocessor IC501 performs all of the Teletext functions internally. The Composite blanking video and Sync signal (CBVS) is input to pin 33 of the micro from pin 29 of IC403. When text is selected the text graphics are output as R.G.B signals on pins 15/16/17 of the micro and fed to pins 34/35/36 of IC403. At the same time pin 18 of the micro goes high taking pin 37 of IC403 high, blanking the picture and selecting text R.G.B. input. Note: mixed mode is available and fast text with 8-page memory.

#### 2.10 Video Path

The detected video signal is output from pins 18 of IC403, to sound traps Z403/404. The video is taken from the other side via the appropriate filter to Pin 18 of IC403. (1.2 p to p) Video to the Scart connectors is taken after R458 to Pin 19 of the Scart connector. The CVBS\_TXT output Pin29 output is fed to IC501 Pin 34 (for Teletext). The video signal is sometimes labelled CVBS on the circuit diagram. This stands for Composite Video Blanking & Sync.

The composite signal is input Pin 13 (Video input) of IC403. This IC carries out all of the luma/Chroma processing internally and also provides the customer control functions of brightness, contrast, sharpness and saturation. IC403 is I<sup>2</sup>C bus controlled and incorporates auto greyscale circuitry and internal luma/chroma delay lines. The resulting R.G.B drive is output on pins 30,31 and 32. The R.G.B passes via connector PL405 to the CRT base PCB. Here the R.G.B signal is amplified by IC901 to provide drive for the cathodes of the CRT. IC901 produces a feedback signal, which is fed to IC403 (pin 33) for blanking and auto greyscale correction.

#### 2.11 Sound Path

The demodulated mono sound is taken from pin 55 of IC403 directly to the sound output stage IC401 Pin 7. The output signal from IC401 is Volume controlled achieved within IC403 using the I<sup>2</sup>C bus line from IC501. To limit the volume at the specified out put the A\_out pin 55 is fed to IC 401 through a voltage divider R455 and R454. Muting of the output stage is provided from Pin 46 of IC501 to pin3 of IC401/6 of IC301.

IN the stereo model the IF from PINS 10 & 11 of the tuner passes through Z401 and the output signal goes through pins 1&2 of IC403. The output QSS signal from IC 403 is taken from pin 11 and sent to audio processor IC700. The left channel is output on PIN 29 and the right channel output is on PIN 28. Then to IC301 after passing through a voltage divider R454/R455 for the right channel and R463/R464 for the left channel.

IC403 handles also the AM modulated signals in L/L' systems at pins 1&2.

#### 2.12 AV Input Signal Path

#### 2.12.1 Video and Sound

IC403 has three CVBS inputs at pins 18,20 and 22. The composite video signal of AV1 is taken from pin 20 of the Scart connector to pin 20 of IC403. The mono sound signal is taken from pins 2 and 6 of the Scart sockets to the switching transistors Q101. The transistor switches the audio depending on the source, and is then fed to pin14 of IC403.

When AV input is selected pin 5,6,7 of the microprocessor IC50I is taken high, this switches the IC403 to external input mode via I<sup>2</sup>C BUS. This connects the video inputs on pins 20 or 22 to IC403 and the audio input on pin 14 to the audio out on pin 55 (via the internal volume control circuit) The signal paths are then as for videopath. The chassis can detect the video signals on Scart using pin 8 switching voltage at pin 56 of IC501.

#### 2.12.2 R.G.B

The R.G.B signals from pins 7,11 and 15 of the Scart connector are fed to the R.G.B input pins (25,26,27) of IC403.

R.G.B operation can be enabled by either taking pin 16 of the Scart connector high, this high is fed to Pin 28 of IC403, or via the I<sup>2</sup>C bus the microprocessor sets IC403 to forced R.G.B mode in which the video processor generates its own fast blank signal. This puts the IC into external R.G.B mode and selects the inputs on pins 25,26 and 27, overriding the video input on pin 20/22.

Note: when using R.G.B input the contrast, brightness and colour controls will still operate.

### 3. TUNER

Either a PLL or a VST tuner is used as a tuner.

UV1316 (VHF/UHF) is used as a PLL tuner. For only PALM/N, NTSC M applications UV 1336 is used as the PLL tuner. UV 1315 (VHF/UHF) is used as a VST Tuner.

| Г |           | OFF-AI     | R CHANNELS           | CAP        | LE CHANNELS      |
|---|-----------|------------|----------------------|------------|------------------|
|   | BAND      |            | FREQUENCY            |            | FREQUENCY        |
|   |           | CHANNELS   | RANGE (MHz)          | CHANNELS   | RANGE (MHz)      |
|   | Low Band  | E2 to C    | 48.25 to 82.25 (1)   | S01 to S08 | 69.25 to 154.25  |
|   | Mid Band  | E5 to E12  | 175.25 to 224.25     | S09 to S38 | 161.25 to 439.25 |
|   | High Band | E21 to E69 | 471.25 to 855.25 (2) | S39 to S41 | 447.25 to 463.25 |

#### Channel coverage of UV1316

(1). Enough margin is available to tune down to 45.25 MHz.

(2). Enough margin is available to tune up to 863.25 MHz.

| Noise      | Typical | Max. | Gain                          | Min.  | Typical | Max.  |
|------------|---------|------|-------------------------------|-------|---------|-------|
| Low band:  | 5 dB    | 9 dB | All channels:                 | 38 dB | 44 dB   | 52 dB |
| Mid band:  | 5dB     | 9 dB | Gain Taper (of-air channels): |       |         | 8 dB  |
| High band: | 6 dB    | 9 dB |                               |       |         |       |

#### **Channel Coverage UV1336**

| BAND      | CHANNELS | FREQUENCY<br>RANGE (MHz) |
|-----------|----------|--------------------------|
| Low Band  | 2 to D   | 55.25 to 139.25          |
| Mid Band  | E to PP  | 145.25 to 391.25         |
| High Band | QQ to 69 | 397.25 to 801.25         |

**Noise** is typically 6 dB for all channels. **Gain** is minimum 38 dB and maximum 50 dB for all channels.

#### **Channel Coverage of UV1315**

|           | OFF-AI     | R CHANNELS           | CABLE CHANNELS |                  |  |
|-----------|------------|----------------------|----------------|------------------|--|
| BAND      |            | FREQUENCY            | CHANNELS       | FREQUENCY        |  |
|           | CHANNELS   | RANGE (MHz)          | CHAININELS     | RANGE (MHz)      |  |
| Low Band  | E2 to C    | 48.25 to 82.25 (1)   | S01 to S10     | 69.25 to 168.25  |  |
| Mid Band  | E5 to E12  | 175.25 to 224.25     | S11 to S39     | 231.25 to 447.25 |  |
| High Band | E21 to E69 | 471.25 to 855.25 (2) | S40 to S41     | 455.25 to 463.25 |  |

(1). Enough margin is available to tune down to 45.25 MHz.

(2). Enough margin is available to tune up to 863.25 MHz.

| Noise     | Тур. | Max.  | Gain               | Min.  | Тур.  | Max.  |
|-----------|------|-------|--------------------|-------|-------|-------|
| Low band  | 6 dB | 9 dB  | All Channels       | 38 dB | 44 dB | 50 dB |
| Mid band  | 6 dB | 10 dB | Gain Taper         |       |       | 8 dB  |
| High band | 6 dB | 11 dB | (off-air channels) |       |       |       |

## 4. DIGITAL TV SOUND PROCESSOR MSP34X0

The MSP 34x0G is designed to perform demodulation of FM or AM-Mono TV sound.

Alternatively, two-carrier FM systems according to the German or Korean terrestrial specs or the satellite specs can be processed with the MSP 34x0G. Only the MSP 3410 does digital demodulation and decoding of NICAM-coded TV stereo sound. The MSP 34x0G offers a powerful feature to calculate the carrier field strength which can be used for automatic standard detection (terrestrial) and search algorithms (satellite).

## 5. SOUND OUTPUT STAGE TDA7266L/TDA7266

TDA7266L is used as the AF output amplifier for mono applications. It is supplied by +12 VDC coming from a separate winding in the SMPS transformer. An output power of 4 W (THD = 0.5 %) can be delivered into an 16 ohm load. TDA7266 is used as the AF output amplifier for stereo applications. It is supplied by +12 VDC coming from a separate winding in the SMPS transformer. An output power of 2\*4W (THD = 0.5 %) can be delivered into an 16 ohm load.

## 6. VERTICAL OUTPUT STAGE WITH TDA8174A

The TDA8174A is a power amplifier circuit for use in  $90^{\circ}$  and  $110^{\circ}$  color deflection systems for 25 to 200 Hz field frequencies, and for 4 : 3 and 16 : 9 picture tubes.

IC403 generates a vertical pulse signal VER\_OUT and V\_AMP that are fed to IC600 (the vertical stage IC). IC600 is supplied by a 26V DC via diode D610. It generates its own ramp signal and based on the V\_AMP & VER\_OUT signals it produces the vertical deflection signals that are fed to connector PL601. Vertical linearity adjustment is controlled by Q604, which is driven by the PWM output of IC501 at pin 49. Vertical position adjustment is conducted by Q606 derived by the VER\_OUT signal. Switching Q606 will change the DC voltage on VOUT\_2 pin, which will either lower or higher the picture. A DC level is supplied at VOUT\_2 via D614 to stabilise the picture and make its position changeable.

## 7. VIDEO OUTPUT AMPLIFIER TDA6107JF/N3

The TDA6107JF includes three video output amplifiers and is intended to drive the three cathodes of a colour CRT directly. The device is contained in a plastic DIL-bent-SIL 9-pin medium power (DBS9MPF) package, and uses high-voltage DMOS technology. To obtain maximum performance, the amplifier should be used with black-current control.

## 8. POWER SUPPLY (SMPS)

The DC voltage required at various parts of the chassis are provided by an SMPS transformer controlled by the IC MC44608 which is designed for driving, controlling and protecting switching transistor of SMPS. The transformer produces 126 V (Flat models) or 116 V (non Flat models) for FBT input, +/- 14 V for audio output IC, S + 3.3, S + 5 V and 8 V for ST92195.

The ZX series of receivers incorporate a Motorola switch mode power supply using a MC 44608 regulator controller IC. The circuit provides power to the receiver in both standby and normal operation modes.

#### 8.1 Start Up

The switch on the mains supply is fed through the mains filter network TR801, the surge limiter resistor *R828*, the bridge rectifier diodes *D811/13/37/38*, and reservoir capacitor producing approx. 320 volts D.C. to feed the switching MOSFET Q801 via the primary winding of TR802 pins 6 and 7.

Start up resistor R801 feeds from a 500V coming from the mains through the adder diodes D809, D890 to pin 8 of IC800, the IC uses 9mA current source and connects it internally to VCC at pin6 allowing a rapid charge enough for start up. Then IC800 responds with the oscillator starting to oscillate at a 40 KHz frequency fixed by the IC manufacturer.

The IC then produces, pulse width modulation pulses, at this frequency on pin 5 to drive the base of the switching FET Q801, that will then switch current on and off through the primary of TR802, which will in turn provides voltages in the secondary windings. The secondary winding voltages being proportional to the length of time that Q801 is turned on in each cycle. The voltage produced between pins 4 and 3 of TR802 is rectified by D804 developing aprox. 12 volts on C810, which takes over from the start up resistor to supply pin 8 of IC800.

The Demag pin at pin1 offers 3 different functions: Zero voltage crossing detection (50mV), 24mA current detection and 120mA current detection. The 24mA level is used to detect the secondary reconfiguration status and the 120mA level to detect an Over Voltage status called Quick OVP.

The VCC at pin6 operates between 6,6V and 13V in normal operation, when this voltage exceeds 15V then the IC output is disabled.

#### 8.2 Voltage Regulation

After initial start up the secondary voltages of TR802 are established. These voltages then need to be regulated to the required levels. In a switch mode power supply such as this, it is the ON time of the switching FET Q801 that determines the output voltages produced. To provide regulation of the supply there is a feedback loop via an adjustable zener IC118 and an OPTO- coupler connected to pin3 of IC800. The reference voltage of IC118 is set to 2,5V to supply a B+ voltage of 115V. Any fluctuation at this pin will cause IC800 to compensate it either by increasing or decreasing the voltage at the secondary outputs.

#### 8.3 Voltage Protection

The MC44608 offers two OVP functions:

1- A fixed function that detects when V CC is higher than 15.4V

2- A programmable function that uses the demag pin. The current flowing into the demag pin is mirrored and compared to the reference current lovp (120mA). -Thus this OVP is quicker than normal number one as it directly senses the change in current rather than waiting for a specific voltage value, and is called QOVP. In both cases, once an OVP condition is detected, the output is latched off until a new circuit START–UP.

3- A software controlled function acts on pin52 of IC501. This pin monitors feedback from both 8V and 5V via D512, then compares these to a reference value Vref pre-set by the hardware through resistors R545, R546, R548. In normal mode operation 1.2V < Vref < 2.4V. Any voltage outside this window will cause the micro controller to force the TV to stand by mode by lowering the standby port. Refer to standby mode.

### **8.4 Current Protection**

To monitor the current drawn by the receiver the source of Q801 is returned to the bridge rectifier through a low value resistor R807. All the current drawn by the receiver will flow through that resistor each time Q801 conducts; this will produce a voltage across the resistors proportional to the current drawn by the receiver. This voltage is fed to pin 2 of IC800 via R806. When the receiver is working normally the voltage across R807 is only a fraction of a volt and is not large enough to have any effect on IC800. Under fault conditions, if the receiver draws excessive current the voltage across *R807* will rise. This voltage is monitored by the current sense input pin2.

This Current Sense pin senses the voltage developed on the series resistor R806 inserted in the source of the power MOSFET. When I sense reaches 1V, the Driver output (pin 5) is disabled. This is known as the Over Current Protection function. A 200mA current source is flowing out of the pin 3 during the start–up phase and during the switching phase in case of the Pulsed Mode of operation. A resistor can be inserted between the sense resistor and the pin 3, thus a programmable peak current detection can be performed during the SMPS stand–by mode.

#### 8.5 Standby Operation

As mentioned earlier the Start-up Management of MC44608 is as follows:

The Vi pin 8 of IC800 is directly connected to the HV DC rail Vin. This high voltage current source is internally connected to the VCC pin and thus issued to charge the VCC capacitor. The V CC capacitor charge period corresponds to the Start–up phase. When the V CC voltage reaches 13V, the high voltage 9mA current source is disabled and the device starts working. The device enters into the switching phase.

To help increase the application safety against high voltage spike on pin8 a small wattage 1k \_ series resistor is inserted between the Vin rail and pin 8. After this start-up the IC can distinguish between the different modes of operation using the following technique:

#### 8.6 Mode Transition

The LW latch is the memory of the working status at the end of every switching sequence. Two different cases must be considered for the logic at the termination of the SWITCHING PHASE:

- 1. No Over Current was observed
- 2. An Over Current was observed

These two cases correspond to the two signals "NOC" in case of "No Over Current" and "OC" in case of Over Current. The effective working status at the end of the ON time memorized in LW corresponds to Q=1 for no over current, and Q=0 for over current.

To enter the standby mode secondary side is reconfigured using D889 loop, this starts with the microprocessor 's pin 47 becomes high; as the standby port becomes high Q503 conducts and Q802 becomes off then D889 conducts and the high voltage output value becomes lower than the NORMAL mode regulated value. The shunt regulator IC118 is fully OFF. In the SMPS stand–by mode all the SMPS outputs are lowered except for the low voltage output that supply the wake–up circuit located at the isolated side of the power supply. In that mode the secondary regulation is performed by the Zener diode (D801) connected in parallel to the TL431. The secondary reconfiguration status can be detected on the SMPS primary side by measuring the voltage level at pin4 of TR802.

In the SMPS stand-by mode the 3 distinct phases are:

The SWITCHING PHASE: Similar to the Overload mode. The current sense clamping level is reduced. When VCC crosses the current sense section, the C.S. clamping level depends on the power to be delivered to the load during the SMPS stand-by mode. Every switching sequence ON/OFF is terminated by an OC as long as the secondary Zener diode voltage has not been reached. When the Zener voltage is reached the ON cycle is terminated by a true PWM action. The proper SWITCHING PHASE termination must correspond to a NOC condition. The LW latch stores this NOC status. The LATCHED OFF PHASE: The MODE latch is set.

The START-UP PHASE is similar to the Overload Mode. The MODE latch remains in its set status (Q=1).

The SWITCHING PHASE: The Stand-by signal is validated and the 200uA is sourced out of the Current Sense pin 2.

#### 8.7 SMPS Switch Off

When the mains is switched OFF, so long as the electrolytic bulk capacitor provides energy to the SMPS the controller remains in the switching phase. Then the peak current reaches its maximum peak value, the switching frequency decreases and all the secondary voltages are reduced. The V CC voltage is also reduced. When VCC is less than 6,5V, the SMPS stops working

## 9. LINE CIRCUIT

Line and frame drive are generated by IC403. The sync pulses are separated from the incoming video signal at pin 18/20/22 and used to control the internal circuitry of the IC. Line drive is produced by counting down the external 4.43 MHz crystal at pin 40 to 15.625 KHz locked to the incoming sync. This drive is output on pin 48 and feeds directly to the line drive transistor Q601. Note. That the output of IC403 Pin 48 is an open-collector and requires a pull up resistor, if the pin is open circuited for test no waveform will be seen. Q601 collector feeds the line output transistor Q603.

The line output stage is conventional with a transformer containing a split diode winding for EHT generation. Fifth harmonic tuning is achieved by capacitor C618/619.

A fly-back pulse is taken from pin 1 of the FBT transformer. This is required by IC403 (Pin 49) for burst / sync gating, and RGB line blanking. The ver\_sync signal is output from the pin47 and fed to Pin41 of IC501. The H\_sync pulse is taken from pin 1 of the FBT and fed to the micro at pin 40. These two signals are required by the micro for graphics timing and also for text.

#### 9.1 B.C.L Circuit (Beam Current Limiter)

Beam current limiting is employed to protect the circuitry in the receiver, the CRT and to prevent excessive X Ray radiation in fault conditions. The current drawn by the CRT is monitored by the current drawn through the winding of the fly-back transformer that produces the EHT for the CRT anode. The end of the winding (Pin 10) is returned to IC403 Pins 46, the beam current drawn by the CRT passes through Q603 and develops a voltage on the collector proportional to the current (V=IxR).

The voltage on the collector will vary depending on the beam current being drawn reducing the brightness and contrast of the picture. If the voltage is sufficiently negative (indicating very high excess beam current) the output will be reduced, reducing the picture brightness and contrast.

## 10. SERIAL ACCESS CMOS 8K EEPROM 24C08

The 24C08 is a 8 Kbit electrically erasable programmable memory (EEPROM), organized as 4 blocks of 256\*08 bits. The memory is compatible with the I<sup>2</sup>C standard, two wire serial interface which uses a bi-directional data bus and serial clock.

#### **EEPROM** Initialisation

If the E<sup>2</sup>PROM IC500 is replaced it will come fully programmed and therefore it is not necessary to initialise the new device. In some circumstances the E<sup>2</sup>PROM may become corrupted in use i.e. static discharge or lightning strike. If this happens, it is advised that the E<sup>2</sup>PROM is replaced.

## **11. SAW FILTERS**

Saw filter type: Model: G1975M: PAL B/G MONO K2966M: PAL SECAM B/G/D/K/I MONO J1981 : PAL-I MONO K2958M: PAL-SECAM B/G-D/K (38) MONO 2962M: PAL-SECAM B/G-D/K (38) MONO L9653M: SECAM L/L' AM MONO (AUDIO IF) G3967M: PAL-SECAM B/G STEREO (VIDEO IF) G353M: PAL-SECAM B/G STEREO (AUDIO IF) K3958M: PAL-SECAM B/G/D/K/I/L/L' STEREO (VIDEO IF) K3956M: PAL-SECAM B/G/D/K/I STEREO (AUDIO IF) K9356M: PAL-SECAM B/G/D/K/I/L/L' STEREO (AUDIO IF) K3958M: PAL-SECAM B/G/D/K/I/L/L' STEREO (AUDIO IF) K3958M: PAL-SECAM B/G/D/K/I/L/L' STEREO (AUDIO IF) K3958M: PAL I NICAM (VIDEO IF) K3956M: PAL I NICAM (AUDIO IF)

### **12. IC DESCRIPTIONS AND INTERNAL BLOCK DIAGRAM**

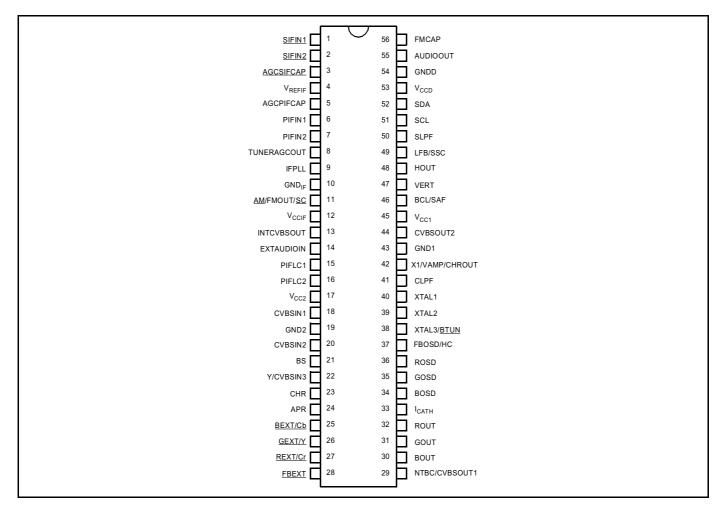
ST92195 STV224X TUNER (UV1315, UV1316, UV1336) TDA7266L / TDA7266M TDA8174A TDA6107 MC44608 MSP34X0G 24C08 TDA1308 SAW FILTERS G1975M, K2966M, K2962M, L9653M, G3962M, G9353M, K3958M, K9356M, K9656M, K6263K, K9652M

#### ST92195

The ST92195 is a member of the ST9+ family of micro-controllers, completely developed and produced by STMicroelectronics using a proprietary n-well HCMOS process. The nucleus of the ST92195 is the advanced Core, which includes the Central Processing Unit (CPU), the ALU, the Register File and the interrupt controller. The Core has independent memory and register buses to add to the efficiency of the code. A set

of on-chip peripherals form a complete system for TV set and VCR applications:

- Voltage Synthesis
- VPS/WSS Slicer
- Teletext Slicer
- Teletext Display RAM
- OSD


Additional peripherals include a watchdog timer, a serial peripheral interface (SPI), a 16-bit timer and an A/D converter.

| <u> </u>                   |    |                                                    |
|----------------------------|----|----------------------------------------------------|
| INT7/P2.0 [ 1<br>RESET [ 2 | 55 | P2.1/INT5/AIN1<br>P2.2/INT0/AIN2<br>P2.2/INT0/AIN2 |
| P0.7 []3                   |    | P2.3/INT6/VS01                                     |
| P0.6 []4                   |    | P2.4/NMI                                           |
| P0.5 [] 5                  |    | P2.5/AIN3/INT4/VS02                                |
| P0.4 🛛 6                   | 51 | OSCIN                                              |
| P0.3 🛛 7                   | 50 | OSCOUT                                             |
| AIN4/P0.2 8                | 49 | P4.7/PWM7/EXTRG/STOUT0                             |
| P0.1 🛛 9                   | 48 | P4.6/PWM6                                          |
| P0.0 10                    | 47 | P4.5/PWM5/SDA2                                     |
| CSO/RESET0/P3.7            | 46 | P4.4/PWM4/SCL2                                     |
| P3.6 12                    | 45 | P4.3/PWM3/TSLU/HT                                  |
| P3.5 13                    | 44 | P4.2/PWM2                                          |
| P3.4 14                    | 43 | P4.1/PWM1                                          |
| вП15                       | 42 | P4.0/PWM0                                          |
| G 🛙 16                     |    | VSYNC                                              |
| R 17                       | 40 | HSYNC/CSYNC                                        |
| FB 18                      | 39 | AVDD1                                              |
| SDA1/SDI/SDO/P5.1          |    | PXFM                                               |
| SCL1/SCK/INT2/P5.0 [20     |    | JTRSTO                                             |
| V <sub>DD</sub> [21        |    | GND                                                |
|                            |    | AGND                                               |
| WSCF 23                    |    | CVBS1                                              |
| V <sub>PP</sub> /wscr [24  |    | CVBS2                                              |
| AVDD3 [25                  | 32 | JTMS                                               |
| TESTO 26                   |    | AVDD2                                              |
|                            |    | CVBSO                                              |
|                            |    | TXCF                                               |
| 510K [20                   | 20 |                                                    |

Figure 1. Microcontroller Pin Description

#### STV224X Video processor

The STV2246/2247/2248 are fully bus controlled ICs for TV including PIF, SIF, luma, Chroma and deflection processing. Used with a vertical frame booster (TDA1771 or TDA8174 for 90° chassis, STV9306 for 110° chassis), they allow the design of multi-standard sets with very few external components and no manual adjustments.



#### Figure 2. Pin connections STV224X/8X (SDIP56)

#### UV1315, UV1316, UV1336

#### General description of UV1315

The UV1315 tuner belongs to the UV 1300 family of tuners, which are designed to meet a wide range of applications. It is a combined VHF, UHF tuner suitable for CCIR systems B/G, H, L, L', I and I'.

#### Features of UV1315

Member of the UV1300 family small sized UHF/VHF tuners Systems CCIR: B/G, H, L, L', I and I'; OIRT: D/K Voltage synthesized tuning (VST) Off-air channels, S-cable channels and Hyper-band Standardized mechanical dimensions and pinning

#### Pinning, Pin Value

- 1. Gain control voltage (AGC): 4.0 V, Max: 4.5 V
- 2. Tuning voltage
- 3. High band switch: 5 V, Min: 4.75 V, Max: 5.5 V
- 4. Mid band switch: 5 V, Min: 4.75 V, Max: 5.5 V
- 5. Low band switch: 5 V, Min: 4.75 V, Max: 5.5 V
- 6. Supply voltage: 5 V, Min: 4.75 V, Max: 5.5 V
- 7. Not connected

- 8. Not connected
- 9. Not connected
- 10. Symmetrical IF output 1
- 11. Symmetrical IF output 2

Band switching table:

|           | Pin 3 | Pin 4 | Pin 5 |
|-----------|-------|-------|-------|
| Low band  | 0 V   | 0 V   | +5 V  |
| Mid band  | 0 V   | +5 V  | 0 V   |
| High band | + 5 V | 0 V   | 0 V   |

#### **General description of UV1316**

The UV1316 tuner belongs to the UV 1300 family of tuners, which are designed to meet a wide range of applications. It is a combined VHF, UHF tuner suitable for CCIR systems B/G, H, L, L', I and I'.

#### Features of UV1316

Member of the UV1300 family small sized UHF/VHF tuners Systems CCIR: B/G, H, L, L', I and I'; OIRT: D/K Digitally controlled (PLL) tuning via I<sup>2</sup>C-bus Off-air channels, S-cable channels and Hyper-band World standardized mechanical dimensions and world standard pinning Complies to "CENELEC EN55020" and "EN55013"

#### Pinning, Pin Value

- 1. Gain control voltage (AGC): 4.0 V, Max: 4.5 V
- 2. Tuning voltage
- 3. I<sup>2</sup>C-bus address select: Max: 5.5 V
- 4. I<sup>2</sup>C-bus serial clock :Min: -0.3 V, Max: 5.5 V
- 5. I<sup>2</sup>C-bus serial data :Min: -0.3 V, Max: 5.5 V
- 6. Not connected
- 7. PLL supply voltage: 5.0 V, Min: 4.75 V, Max: 5.5 V
- 8. ADC input
- 9. Tuner supply voltage: 33 V, Min: 30 V, Max: 35 V
- 10. Symmetrical IF output 1
- 11. Symmetrical IF output 2

#### General description of UV1336

UV1336 series is developed for reception of channels broadcast in accordance with the M, N standard.

#### Features of UV1336

Global standard pinning Integrated Mixer-Oscillator & PLL function Conforms to CISPR 13, FCC and DOC (Canada) regulations Low power consumption Both Phono connector and 'F' connector are available

#### Pinning, Pin Value

- 1. Gain control voltage: 4.0 V, Max: 4.5 V
- 2. Tuning voltage
- 3. Address select Max: 5.5 V
- 4. Serial clock: Min: -0.3 V, Max: 5.5 V
- 5. Serial data :Min: -0.3 V, Max: 5.5 V
- 6. Not connected
- 7. Supply voltage: 5.0 V, Min: 4.75 V, Max: 5.5 V
- 8. ADC input (optional)
- 9. Tuning supply voltage: 33 V, Min: 30 V, Max: 35 V
- 10. Ground
- 11. IF output

#### TDA7266/TDA7266L

#### **General Description of TDA7266L**

The TDA7266L is a mono bridge amplifier specially designed for TV and Portable Radio applications. Requires very few external components

WIDE SUPPLY VOLTAGE RANGE (3-18 V)

MINIMUM EXTERNAL COMPONENTS.

- NO SVR CAPACITOR
- NO BOOTSTRAP

NO BOUCHEROT CELLS
INTERNALLY FIXED GAIN
STAND-BY & MUTE FUNCTIONS
SHORT CIRCUIT PROTECTION
THERMAL OVERLOAD PROTECTION

#### Pinnig

1 N.C. 2 N.C. 3 MUTE 4 ST-BY 5 PW-GND 6 S-GND 7 IN 8 VCC 9 OUT+ 10 OUT -

#### **General Description of TDA7266**

The TDA7266 is a 2x7 Watt dual power amplifier. It is used for sound amplification at stereo TV sets. WIDE SUPPLY VOLTAGE RANGE (3-18 V)

MINIMUM EXTERNAL COMPONENTS

- NOSWR CAPACITOR
- NOBOOTSTRAP
- NO BOUCHEROT CELLS
- INTERNALLY FIXED GAIN

STAND-BY & MUTE FUNCTIONS

SHORT CIRCUIT PROTECTION

THERMAL OVERLOAD PROTECTION

#### Pinnig

- 1. OUT1 +
- 2. OUT1 –
- 3. VCC
- 4. IN1
- 5. N.C.
- 6. MUTE
- 7. ST-BY
- 8. PW-GND
- 9. S-GND
- 10. N.C.
- 11. N.C.
- 12. IN2
- 13. VCC
- 14. OUT2 -
- 15. OUT2 +

#### **TDA8174AW**

INDEPENDENT VERTICAL AMPLITUDE ADJUSTMENT. BUFFER STAGE. POWER AMPLIFIER. FLYBACK GENERATOR. THERMAL PROTECTION. INTERNAL REFERENCE VOLTAGE DECOUPLING.

#### **General Description**

TDA8174A and TDA8174AW are a monolithic integrated circuits. It is a full performance and very efficient vertical deflection circuit intended for direct drive of a TV picture tube in Color and B & W television as well as in Monitor and Data displays.

#### Pinning

- 1. POWER OUTPUT
- 2. OUTPUT STAGE Vs
- 3. TRIGGER INPUT
- 4. HEIGHT ADJUSTMENT
- 5. VOLTAGE REF DECOUPLING
- 6. GROUND
- 7. RAMP GENERATOR
- 8. BUFFER OUTPUT
- 9. INVERTING INPUT
- 10. Vs
- **11. FLYBACK GENERATOR**

#### **TDA6107**

#### Features

- · Typical bandwidth of 5.5 MHz for an output signal of 60 V (p-p)
- · High slew rate of 900 V/ms
- · No external components required
- · Very simple application
- · Single supply voltage of 200 V
- Internal reference voltage of 2.5 V
- · Fixed gain of 50
- Black-Current Stabilization (BCS) circuit with voltage window from 1.8 to 6 V and current window from -100 mA to 10 mA
- · Thermal protection
- · Internal protection against positive flashover discharges appearing on the CRT.

#### **General Description**

The TDA6107JF includes three video output amplifiers and is intended to drive the three cathodes of a colour CRT directly. The device is contained in a plastic DIL-bent-SIL 9-pin medium power (DBS9MPF) package, and uses high-voltage DMOS technology. To obtain maximum performance, the amplifier should be used with black-current control.

#### Pinning, Pin Value

- 1. BLUE INPUT
- 2. VCC LOW VOLTAGE
- 3. GREEN INPUT
- 4. RED INPUT
- 5. VDD HIGH VOLTAGE
- 6. RED CATHODE CURRENT
- 7. RED OUTPUT
- 8. GROUND
- 9. RED FEEDBACK
- 10. GREEN OUTPUT
- **11. GREEN CATHODE CURRENT**
- 12. GREEN FEEDBACK
- 13. BLUE OUTPUT
- 14. BLUE CATHODE
- **15. BLUE FEEDBACK**

AK - 44 CHASSIS

#### MC44608

#### **General description**

The MC44608 is a high performance voltage-mode controller designed for off-line converters. This high voltage circuit that integrates the start-up current source and the oscillator capacitor, requires few external components while offering a high flexibility and reliability.

The device also features a very high efficiency stand–by management consisting of an effective Pulsed Mode operation. This technique enables the reduction of the stand–by power consumption to approximately 1 W while delivering 300 mW in a 150 W SMPS.

- Integrated start-up current source
- · Loss less off-line start-up
- Direct off-line operation
- Fast start-up

#### **General Features**

- Flexibility
- Duty cycle control
- On chip oscillator switching frequency 40, or 75 KHz
- Secondary control with few external components

#### Protections

- Maximum duty cycle limitation
- Cycle by cycle current limitation
- Demagnetization (Zero current detection) protection
- "Over V CC protection" against open loop
- Programmable low inertia over voltage protection against open loop
- Internal thermal protection

#### GreenLine Controller

- Pulsed mode techniques for a very high efficiency low power mode
- Lossless start-up
- Low dV/dT for low EMI radiation

#### Pinning, Pin Value

- 1. Demagnetization Zero cross detection voltage: 50 mV typ.
- 2. I Sense Over current protection voltage 1 V typ.
- 3. Control Input Min: 7.5 V Max.: 18 V
- 4. Ground lout 2 Ap-p during scan 1.2 Ap-p during flyback
- 5. Driver Output resistor 8.5 Ohm sink 15 Ohm source typ.
- 6. Supply voltage Max: 16 V (Operating range 6.6 V 13 V)
- 7. No connection
- 8. Line Voltage Min: 50 V Max: 500 V

#### MSP34X0G

The MSP 34x0G family of single-chip Multistandard Sound Processors covers the sound processing of all analog TV-Standards worldwide, as well as the NICAM digital sound standards. The full TV sound processing, starting with analog sound IF signal-in, down to processed analog AF-out, is performed on a single chip. Figure 3 shows a simplified functional block diagram of the MSP 34x0G. This new generation of TV sound processing ICs now includes versions for processing the multichannel television sound (MTS) signal conforming to the standard recommended by the Broadcast Television Systems Committee (BTSC). The DBX noise reduction, or alternatively, Micronas Noise Reduction (MNR) is performed alignment free.

Other processed standards are the Japanese FM-FM multiplex standard (EIA-J) and the FM Stereo Radio standard. Current ICs have to perform adjustment procedures in order to achieve good stereo separation for BTSC and EIA-J. The MSP 34x0G has optimum stereo performance without any adjustments. All MSP 34xxG versions are pin compatible to the MSP 34xxD. Only minor modifications are necessary to adapt a MSP 34xxD controlling software to the MSP 34xxG. The MSP 34x0G further simplifies controlling software.

Standard selection requires a single I2C transmission only. The MSP 34x0G has built-in automatic functions: The IC is able to detect the actual sound standard automatically (Automatic Standard Detection).

Furthermore, pilot levels and identification signals can be evaluated internally with subsequent switching between mono/ stereo/bilingual; no I2C interaction is necessary (Automatic Sound Selection). The MSP 34x0G can handle very high FM deviations even in conjunction with NICAM processing. This is especially important for the introduction of NICAM in China. The ICs are produced in submicron CMOS technology.

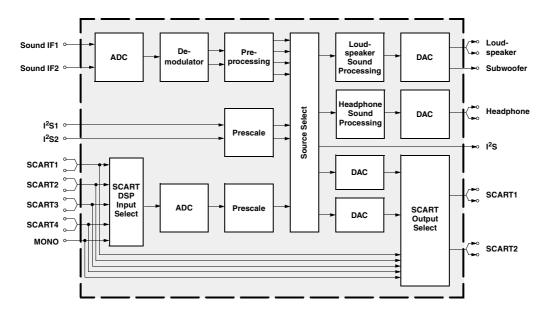



Figure 3. Simplified functional block diagram of the MSP 34x0G.

#### 24C08

#### General description

The 24C08 is a 8 Kbit electrically erasable programmable memory (EEPROM), organized as 4 blocks of 256 \* 08 bits. The memory operates with a power supply value as low as 2.5 V.

#### Features

Minimum 1 million ERASE / WRITE cycles with over 10 years data retention Single supply voltage: 4.5 to 5.5 V Two wire serial interface, fully I<sup>2</sup>C-bus compatible Byte and Multi-byte write (up to 8 bytes) Page write (up to 16 bytes) Byte, random and sequential read modes Self timed programming cycle

#### Pinning, Pin Value

- 1. Write protect enable: 0 V
- 2. Not connected: 0 V
- 3. Chip enable input: 0 V
- 4. Ground: 0 V
- 5. Serial data address input/output: Input LOW voltage: Min: -0.3 V, Max: 0.3 \* Vcc: Input HIGH voltage: Min: 0.7\* Vcc, Max: Vcc+1
- 6. Serial clock: Input LOW voltage: Min: -0.3 V, Max: 0.3 \* Vcc: Input HIGH voltage: Min: 0.7 \* Vcc, Max: Vcc+1
- 7. Multibyte/Page write mode: Input LOW voltage: Min: -0.3 V, Max: 0.5 V: Input HIGH voltage: Min: Vcc 0.5, Max: Vcc + 1
- 8. Supply voltage: Min: 2.5 V, Max: 5.5 V

#### TDA1308

#### Features

Wide temperature range Excellent power supply ripple rejection Low power consumption Short-circuit resistant High performance high signal-to-noise ratio low distortion

#### Pinning, Pin Value

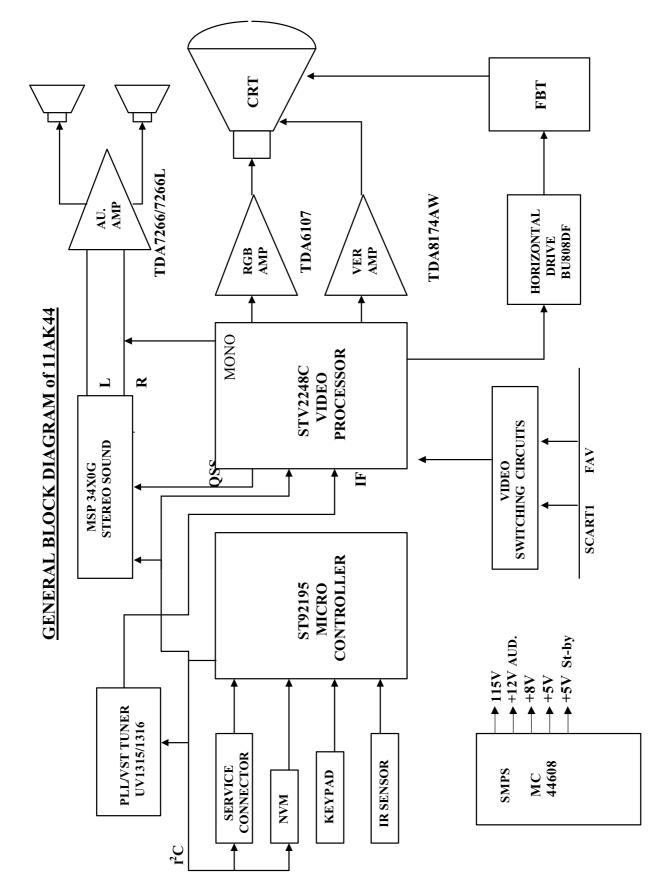
- 1. Output A (Voltage swing): Min: 0.75 V, Max: 4.25 V
- 2. Inverting input A: Vo (clip): Min: 1400 mVrms
- 3. Non-inverting input A: 2.5 V
- 4. Ground: 0 V
- 5. Non-inverting input B: 2.5 V
- 6. Inverting input B: Vo (clip): Min: 1400 mVrms
- 7. Output B (Voltage swing): Min: 0.75 V, Max: 4.25 V
- 8. Positive supply: 5 V, Min: 3.0 V, Max: 7.0 V

#### Saw filter's list

|      |              | VIDEO  | AUDIO |
|------|--------------|--------|-------|
|      | PAL BG       | G1975M |       |
|      | PSBG DK      | K2966M |       |
| MONO | PAL II'      | J1981  |       |
|      | PSBGDKK' II' | K2966M |       |
|      | PSBGDKK' LL' | K2962M | L9653 |

|     |              | VIDEO  | AUDIO  |
|-----|--------------|--------|--------|
|     | PAL BG       | G3967M | G9353M |
| STR | PAL II'      | K3958M | K9356  |
|     | PSBGDKK' II' | K3958M | K9356  |
|     | PSBGDKK' LL' | K3958M | K9656  |

#### Pinning


- 1. Input
- 2. Input-ground
- 3. Chip carrier-ground
- 4. Output
- 5. Output

#### K9656M, L9653M

#### Pinnig

- 1. Input
- 2. Switching Input
- 3. Chip carrier-ground
- 4. Output
- 5. Output

## 13. GENERAL BLOCK DIAGRAM of 11AK44



#### 14. SERVICE MENU 14.1 Service Menu entrance

All system, geometry and white balance alignments are performed in Service Mode. Before starting the service mode alignments, make sure that all manual adjustments are done correctly.

#### To enter the service mode:

- 1. Press the MENU (30) button on the remote control gun. See figure 5.
- 2. Press digit keys 4, 7, 2 and 5 consecutively.

When the Service Mode is entered the following On Screen Display appears (figure 4):



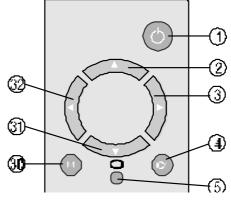



Figure 4. Service Mode

Figure 5. Remote Control

#### To adjust the different registers:

1. Use the CURSOR UP (2) / DOWN (31) buttons to move between the registers. See the above right figure.

2. Use the CURSOR LEFT (32) / RIGHT (3) buttons to change the data. See figure 5.

#### To memorize the adjustment:

It is not required to memorize the adjustment. Data are stored automatically.

#### To exit the Service Mode:

Switch the TV off using the mains switch.

#### 14.2 Service Adjustments

| Desister | Parameter                                   | Notoo                                          | Default Values |               |  |  |  |
|----------|---------------------------------------------|------------------------------------------------|----------------|---------------|--|--|--|
| Register | Parameter                                   | Notes                                          | A51EFS13X191   | A51ELD032X001 |  |  |  |
| OSD      | OSD Horizontal Position                     |                                                | 70             | 81            |  |  |  |
| IF1      | IF Coarse Adjust                            |                                                | Х              | Х             |  |  |  |
| IF2      | IF Fine Adjust                              |                                                | Х              | Х             |  |  |  |
| IF3      | IF Coarse Adjust for L-Prime                |                                                | Х              | Х             |  |  |  |
| IF4      | IF Fine Adjust for L-Prime                  |                                                | Х              | Х             |  |  |  |
| AGC      | Automatic Gain Control                      |                                                | Х              | Х             |  |  |  |
| VLIN     | Vertical Linearity                          |                                                | 37             | 10            |  |  |  |
| RGBH     | RGB Horizontal Shift Offset                 | CVBS – RGB Horizontal<br>position compensation | 8              | 7             |  |  |  |
| VSOF     | Vertical Size Offset for 60 Hz              |                                                | -30            | -32           |  |  |  |
| VPOF     | Vertical Position Offset for 60 Hz          |                                                | 2              | 1             |  |  |  |
| HSOF     | Horizontal Size Offset for 60 Hz            |                                                | -22            | -22           |  |  |  |
| HPOF     | Horizontal Position Offset for 60 Hz        |                                                | -18            | -18           |  |  |  |
| HTOF     | Horizontal Trap Correction Offset for 60 Hz |                                                | -19            | -20           |  |  |  |
| WR       | White Point Adjust for RED                  |                                                | 49             | 42            |  |  |  |
| WG       | White Point Adjust for GREEN                |                                                | 45             | 41            |  |  |  |
| WB       | White Point Adjust for BLUE                 |                                                | 42             | 42            |  |  |  |
| BR       | Bias for RED                                |                                                | 31             | 31            |  |  |  |
| BG       | Bias for GREEN                              |                                                | 31             | 31            |  |  |  |

|          | <b>–</b>                                               | N 4                              | Default Values                                                                |                                 |  |  |
|----------|--------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------|---------------------------------|--|--|
| Register | Parameter                                              | Notes                            |                                                                               | 91 A51ELD032X001                |  |  |
| APR      | APR Threshold                                          |                                  | 10                                                                            | 4                               |  |  |
| BRI      | Factory Setting Brightness                             |                                  | 31                                                                            | 31                              |  |  |
| CON      | Factory Setting Contrast                               |                                  | 49                                                                            | 49                              |  |  |
| COL      | Factory Setting Colour                                 |                                  | 26                                                                            | 26                              |  |  |
| SHA      | Factory Setting Sharpness                              |                                  | 6                                                                             | 6                               |  |  |
| HUE      | Factory Setting Hue                                    |                                  | 31                                                                            | 31                              |  |  |
| VOL      | Factory Setting Volume                                 |                                  | 9                                                                             | 9                               |  |  |
| WR-R     | White Point Adjust for Red (RGB mode)                  |                                  | 48                                                                            | 30                              |  |  |
| WG-R     | White Point Adjust for Green (RGB mode)                |                                  | 53                                                                            | 40                              |  |  |
| WB-R     | White Point Adjust for Blue (RGB mode)                 |                                  | 37                                                                            | 40                              |  |  |
| FMP1     | FM Prescaler when AVL is OFF                           | STEREO ONLY                      | 11                                                                            | 11                              |  |  |
| NIP1     | NICAM Prescaler when AVL is OFF                        | STEREO ONLY                      | 25                                                                            | 25                              |  |  |
| SCP1     | SCART Prescaler when AVL is OFF                        |                                  | 11                                                                            | 11                              |  |  |
| SEC1     | SCART Prescaler when AVL is OFF for<br>SECAM L/L' MONO |                                  | 11                                                                            | 11                              |  |  |
| FMP2     | FM Prescaler when AVL is ON                            |                                  | 16                                                                            | 16                              |  |  |
| NIP2     | NICAM Prescaler when AVL is ON                         | STEREO ONLY                      | 37                                                                            | 37                              |  |  |
| SCP2     | SCART Prescaler when AVL is ON                         | STEREO ONLY                      | 17                                                                            | 17                              |  |  |
| SEC2     | SCART Prescaler when AVL is ON for SECAM L/L' MONO     |                                  | 17                                                                            | 17                              |  |  |
| F1H      | High Byte of crossover frequency for<br>VHF1-VHF3      | Meaningful for only PLL<br>Tuner | See "15.1 Service Registers<br>Updating regarding the Tuner"<br>on Page 27.   |                                 |  |  |
| F1L      | Low Byte of crossover frequency for<br>VHF1-VHF3       | Meaningful for only PLL<br>Tuner | See "15.1 Service Registers Updating<br>regarding the Tuner"<br>on Page 27.   |                                 |  |  |
| F2H      | High Byte of crossover frequency for<br>VHF3-UHF       | Meaningful for only PLL<br>Tuner | See "15.1 Service Registers Updating<br>regarding the Tuner"<br>on Page 27.   |                                 |  |  |
| F2L      | Low Byte of crossover frequency for<br>VHF3-UHF        | Meaningful for only PLL<br>Tuner | . See "15.1 Service Registers Updating<br>regarding the Tuner"<br>on Page 27. |                                 |  |  |
| BS1      | Band Switch Byte for VHF1                              | Meaningful for only PLL<br>Tuner | See "15.1 Service Registers Updating<br>regarding the Tuner"<br>on Page 27.   |                                 |  |  |
| BS2      | Band Switch Byte for VHF3                              | Meaningful for only PLL<br>Tuner | See "15.1 Service Registers Updating regarding the Tuner" on Page 27.         |                                 |  |  |
| BS3      | Band Switch Byte for UHF                               | Meaningful for only PLL<br>Tuner | See "15.1 Service Registers Updating regarding the Tuner" on Page 27.         |                                 |  |  |
| СВ       | Control Byte                                           | Meaningful for only PLL<br>Tuner | See "15.1 Serv<br>regarding the T<br>on Page 27.                              | ice Registers Updating<br>uner" |  |  |
| OP1      | Option 1 (see the Option List)                         |                                  | х                                                                             | Х                               |  |  |
| OP2      | Option 2 (see the Option List)                         |                                  | х                                                                             | Х                               |  |  |
| OP3      | Option 3 (see the Option List)                         |                                  | х                                                                             | Х                               |  |  |
| OP4      | Option 4 (see the Option List)                         |                                  | х                                                                             | Х                               |  |  |
| OP5      | Option 5 (see the Option List)                         |                                  | х                                                                             | Х                               |  |  |
| TX1      | Teletext Option 1 (see the Option List)                |                                  | х                                                                             | X                               |  |  |
| GEOM     | Geometry Menu                                          |                                  | See Geometry 7                                                                | Table on Page 25.               |  |  |
| OP8      | Not used                                               |                                  | х                                                                             | Х                               |  |  |

#### 14.3 Using Coloured Buttons

By using the four coloured buttons on the remote control (24, 23, 13, 14) different features or adjust may be accessed.

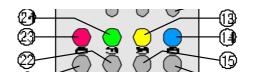



Figure 6. Coloured buttons Remote Control

#### 14.3.1 AVL

Press the RED button (23) to activate or deactivate the AVL (Automatic Volume Level, between different broadcast channels).

| SHARP                                                                           |                                                                    |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------|
| OSD<br>IF1<br>IF2<br>IF3<br>IF4<br>AGC<br>VLIN<br>RGBH<br>VSOF<br>VPOF<br>> 0 3 | 070<br>005<br>067<br>006<br>065<br>061<br>040<br>007<br>-23<br>-02 |

#### 14.3.2 GEOMETRY MENU

Press the GREEN button (24) in order to change from the Main Service Menu to the Geometry Menu, as shows the figure 7. To return to the Main Service Menu it should be pressed the Menu button (30), see Figure 5.

| GEOMETRY                                                                         |
|----------------------------------------------------------------------------------|
| VSIZ 020<br>VPOS 018<br>VSC0 014<br>VCC0 007<br>HSIZ 010<br>HPOS 039<br>HPIN 015 |

Figure 7. Geometry Menu

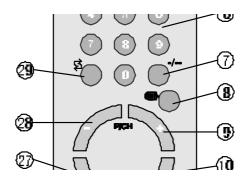



Figure 8. Remote Control

In the bottom area of this Menu, it can be seen "AUTO". By pressing the WIDE MODE button (8) it changes to 4:3 or 16:9 format. To perform the Geometry adjustments select the most suitable option:

- AUTO, entering 4:3 or 16:9 signal and proceeding with adjustments as below.
- 4:3, entering 4:3 signal and proceeding with adjustments as below.
- 16:9, entering 16:9 signal and proceeding with adjustments as below.

#### 14.3.2.1 Geometry Table

|          |                     |        | Default | Values        |      |  |
|----------|---------------------|--------|---------|---------------|------|--|
| Register | Parameter           | A51EFS | 13X191  | A51ELD032X001 |      |  |
|          |                     | 4:3    | 16:9    | 4:3           | 16:9 |  |
| VSIZ     | Vertical Size       | 35     | 62      | 24            | 50   |  |
| VPOS     | Vertical Position   | 11     | 16      | 12            | 16   |  |
| VSCO     | Not used            | 14     | 14      | 14            | 14   |  |
| VCCO     | Not used            | 7      | 7       | 7             | 7    |  |
| HSIZ     | Not used            | 10     | 9       | 30            | 11   |  |
| HPOS     | Horizontal Position | 33     | 33      | 40            | 39   |  |
| HPIN     | Not used            | 19     | 15      | 27            | 15   |  |
| НССО     | Not used            | 0      | 0       | 0             | 0    |  |
| HTRP     | Not used            | 10     | 10      | 3             | 10   |  |
| VZSZ     | Not used            | 3      | 2       | 7             | 2    |  |

#### 14.3.2.2 Geometry Adjustments

#### VSIX (Vertical Size)

Adjust the Vertical Size so that 8% over-scan is achieved. The effect of this adjustment is shown in figure 9.

• Use the CURSOR LEFT (32) / RIGHT (3) buttons to change the data. See figure 5.

#### **VPOS (Vertical Position)**

Adjust the Vertical Position so that the picture is centred. The effect of this adjustment is shown in figure 10.

• Use the CURSOR LEFT (32) / RIGHT (3) buttons to change the data. See figure 5.

#### **HPOS (Horizontal Position)**

Adjust the Horizontal Position so that the picture is centred. The effect of this adjustment is shown in figure 11.

• Use the CURSOR LEFT (32) / RIGHT (3) buttons to change the data. See figure 5.

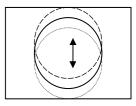



Figure 9

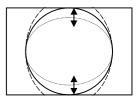



Figure 10

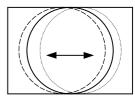



Figure 11

#### 14.3.3 Screen Adjustment

Press the YELLOW button (13) in order to prepare the system for screen-adjustments (Vertical Scan disable). Adjust horizontal line, via screen potentiometer, as thin as possible. To return to the Main Service Menu it should be pressed the Menu button (30).





#### 14.3.4 IF Adjustment

Select IF1, IF2, IF3 or IF4. When the blue button (14) is pressed the before selected IF register is automatically adjusted.

#### 14.4 Auto Programming System Set Up

#### 1. Description

In case the TV set should be serviced, there is the possibility of returning the set with the A.P.S. (Auto Programming System) activated in order to make easy the first start up to the customer. See the below figure. If this Feature is activated the Picture and Sound Menus will be automatically memorized to the default values.

#### 2. Before start

It is necessary let the TV set in the program number that will appear for the first time, because the A.P.S does not preset this selection.

#### 3. Procedure

- 3.1 Enter the Service Mode. See Page 23.
- 3.2 Access to TXT1 Register by CURSOR UP / DOWN.
- 3.3 Press 7 button on the remote control in order to activate the Auto Programming System.
- 3.4 Exit the Service Mode by the Menu button (30).
- 3.5 Switch the TV off using the mains switch.



## **15. OPTION LIST**

#### 15.1 Service Registers Updating regarding the Tuner

|                       | VHF1-VHF3  | VHF3-UHF   |          |          | A        | K44 SERVICI | E MENU ITEM | S        |          |          |
|-----------------------|------------|------------|----------|----------|----------|-------------|-------------|----------|----------|----------|
|                       | Frq. (Mhz) | Frq. (Mhz) | F1H      | F1L      | F2H      | F2L         | BS1         | BS2      | BS3      | СВ       |
| Philips UV1316S MK3   | 156,25 MHz | 441,25 MHz | 00001100 | 00110010 | 00011110 | 00000010    | 00000001    | 00000010 | 00000100 | 10001110 |
| Thomson CTT5020       | 114,25 MHz | 401,25 MHz | 00001001 | 10010010 | 00011011 | 10000010    | 00000011    | 00000110 | 10000101 | 10001110 |
| Samsung TECC2949PG28B | 170,25 MHz | 465,25 MHz | 00001101 | 00010010 | 00011111 | 10000010    | 00000001    | 00000010 | 00000100 | 10001110 |
| Samsung TECC2949PG35B | 170,25 MHz | 449,25 MHz | 00001101 | 00010010 | 00011110 | 10000010    | 00000001    | 00000010 | 00001000 | 10001110 |
| Alps TEDE9X226A       | 142,25 MHz | 425,25 MHz | 00001011 | 01010010 | 00011101 | 00000010    | 00000001    | 00000010 | 00001000 | 10001110 |
| Alps TEDE9-004A       | 149,25 MHz | 424,25 MHz | 00001011 | 11000010 | 00011100 | 11110010    | 00000001    | 00000010 | 00001000 | 10001110 |

| Explanatio | ns                                          |
|------------|---------------------------------------------|
| F1H        | High byte of VHF1-VHF3 cross-over frequency |
| F1L        | Low byte of VHF1-VHF3 cross-over frequency  |
| F2H        | High byte of VHF3-UHF cross-over frequency  |
| F2L        | Low byte of VHF3-UHF cross-over frequency   |
| BS1        | Band switching byte for VHF1                |
| BS2        | Band switching byte for VHF3                |
| BS3        | Band switching byte for UHF                 |
| CB         | Control byte                                |

## 15.2 Registers Details

## **OP1 – Peripheral Options**

| 7 |   |   |   |   |   |   |   | NOT USED                                             |
|---|---|---|---|---|---|---|---|------------------------------------------------------|
|   | 6 |   |   |   |   |   |   | 1, Display "AV-3" as "F-AV"                          |
|   |   |   |   |   |   |   |   | 0, Display "AV-3" as "B-AV"                          |
|   |   | 5 |   |   |   |   |   | 1, Turn back TV mode after the last AV (with AV key) |
|   |   |   |   |   |   |   |   | 0, Turn back first AV mode after the last AV         |
|   |   |   | 4 |   |   |   |   | 1, SVHS is available in AV key stream                |
|   |   |   |   |   |   |   |   | 0, SVHS is NOT available in AV key stream            |
|   |   |   |   | 3 |   |   |   | 1, RGB is available in AV key stream                 |
|   |   |   |   |   |   |   |   | 0, RGB is NOT available in AV key stream             |
|   |   |   |   |   | 2 |   |   | 1, AV-3 is available in AV key stream                |
|   |   |   |   |   |   |   |   | 0, AV-3 is NOT available in AV key stream            |
|   |   |   |   |   |   | 1 | [ | 1, AV-2 is available in AV key stream                |
|   |   |   |   |   |   |   |   | 0, AV-2 is NOT available in AV key stream            |
|   |   |   |   |   |   |   | 0 | 0 1, AV-1 is available in AV key stream              |
|   |   |   |   |   |   |   |   | 0, AV-1 is NOT available in AV key stream            |

## **OP2 – Reception Standard Options**

| 7 |   |   |   |   |   |   |   | 1, 3-button keyboard (V-, P+, V+)<br>0, 4/5 button keyboard (V-, V+, P-, P+, Menu) |
|---|---|---|---|---|---|---|---|------------------------------------------------------------------------------------|
|   | 6 |   |   |   |   |   |   | 1, L/L' is available<br>0, L/L' is not available                                   |
|   |   | 5 |   |   |   |   |   | 1, I is available<br>0, I is not available                                         |
|   |   |   | 4 |   |   |   |   | 1, DK is available<br>0, DK is not available                                       |
|   |   |   |   | 3 |   |   |   | 1, BG is available<br>0, BG is not available                                       |
|   |   |   |   |   | 2 | 1 | 0 | RESERVED (Keep as 000)                                                             |

## **OP3 – Video Options**

| 7 | 6 |   | 1 |   |   |   |   | Xtal Configuration                             |
|---|---|---|---|---|---|---|---|------------------------------------------------|
|   |   |   |   |   |   |   |   | 00, 1 Xtal PAL 4.43                            |
|   |   |   |   |   |   |   |   | 01, 2 Xtal PAL/NTSC 4.43/3.58                  |
|   |   |   |   |   |   |   |   | 10, 1 Xtal PAL/SEC/NTSC 4.43                   |
|   |   |   |   |   |   |   |   | 11, 2 Xtal PAL/SEC/NTSC 4.43/3.58              |
|   |   | 5 |   |   |   |   |   | 1, Enable Blue back when no signal in AV modes |
|   |   |   |   |   |   |   |   | 0, No blue back in AV modes                    |
|   |   |   | 4 |   |   |   |   | 1, White Insertion is ON                       |
|   |   |   |   |   |   |   |   | 0, White Insertion is OFF                      |
|   |   |   |   | 3 |   |   |   | 1, Blue Background when no signal              |
|   |   |   |   |   |   |   |   | 0, Disable Blue Background                     |
|   |   |   |   |   | 2 |   |   | 1, Semi-transparent background for menu        |
|   |   |   |   |   |   |   |   | 0, Solid Menu background for menu              |
|   |   |   |   |   |   | 1 |   | 1, Black Stretch is ON                         |
|   |   |   |   |   |   |   |   | 0, Black Stretch is OFF                        |
|   |   |   |   |   |   |   | 0 | 1, APR is ON                                   |
|   |   |   |   |   |   |   |   | 0, APR is OFF                                  |

## **OP4 – TV Features**

|   |   |   |   |   |   |   | 1, Headphone is available (for STEREO models)                                |
|---|---|---|---|---|---|---|------------------------------------------------------------------------------|
|   |   |   |   |   |   |   | 0, Headphone is not available                                                |
| 6 |   |   |   |   |   |   | 1, Arabic/Persian is Available in Menu Languages (for A, D, E, F, and later) |
|   |   |   |   |   |   |   | 0, Arabic/Persian is NOT Available in Menu Languages                         |
|   | 5 |   |   |   |   |   | 1, Hebrew is Available in Menu Languages (for A, D, E, F, and later)         |
|   |   |   |   |   |   |   | 0, Hebrew is NOT Available in Menu Languages                                 |
|   |   | 4 |   |   |   |   | 1, Hotel Mode can be activated                                               |
|   |   |   |   |   |   |   | 0, Hotel Mode can not be activated                                           |
|   |   |   | 3 |   |   |   | 1, No Signal Timer is enabled                                                |
|   |   |   |   |   |   |   | 0, No Signal Timer is disabled                                               |
|   |   |   |   | 2 |   |   | For PLL Tuner                                                                |
|   |   |   |   |   |   |   | 1, Frequency based search                                                    |
|   |   |   |   |   |   |   | 0, Channel table based search                                                |
|   |   |   |   |   |   |   | (No meaning for VST Tuner)                                                   |
|   |   |   |   |   | 1 |   | 1, 3-band tuning (VHF1, VHF3, UHF)                                           |
|   |   |   |   |   |   |   | 0, 1-band tuning (only UHF)                                                  |
|   |   |   |   |   |   | 0 | 0 1, Extra 200 msec blanking for VST                                         |
|   |   |   |   |   |   |   | 0, no-extra blanking                                                         |
|   | 6 | 6 | 5 | 5 | 5 | 5 |                                                                              |

## **OP5 – Channel Tables**

| 7 |   |   |   |   |   |   |   | 1, Extra 150 msec blanking more for VST (if OP4.b0 = 1, to SECAM color problem)<br>0, no-extra blanking |
|---|---|---|---|---|---|---|---|---------------------------------------------------------------------------------------------------------|
|   | 6 |   |   |   |   |   |   | 1, "Programme" item in AUTOSTORE menu is visible<br>0, "Programme" item in AUTOSTORE menu is invisible  |
|   |   | 5 |   |   |   |   |   | NOT USED                                                                                                |
|   |   |   | 4 |   |   |   |   | 1, French OS Channel Table is available                                                                 |
|   |   |   |   |   |   |   |   | 0, French OS Channel Table is not available                                                             |
|   |   |   |   | 3 |   |   |   | 1, French Channel Table is available                                                                    |
|   |   |   |   |   |   |   |   | 0, French Channel Table is not available                                                                |
|   |   |   |   |   | 2 |   |   | 1, England Channel Table is available                                                                   |
|   |   |   |   |   |   |   |   | 0, England Channel Table is not available                                                               |
|   |   |   |   |   |   | 1 |   | 1, East Europe Channel Table is available                                                               |
|   |   |   |   |   |   |   |   | 0, East Europe Channel Table is not available                                                           |
|   |   |   |   |   |   |   | 0 | 1, West Europe Channel Table is available                                                               |
|   |   |   |   |   |   |   |   | 0, West Europe Channel Table is not available                                                           |

## TX1 – Teletext Options

| 7 |   | Γ | 1 |   |   | Γ | Γ | 0, Auto Programming System off                       |
|---|---|---|---|---|---|---|---|------------------------------------------------------|
|   |   |   |   |   |   |   |   | 1, Auto Programming System on                        |
|   | 6 |   |   |   |   |   |   | RESERVED (must be 0)                                 |
|   |   | 5 | 4 | 3 |   |   |   | NOT USED                                             |
|   |   |   |   |   | 2 | 1 | 0 | Device type selection                                |
|   |   |   |   |   |   |   |   | 000, EPROM M6 A                                      |
|   |   |   |   |   |   |   |   | 001, ROM H5 P                                        |
|   |   |   |   |   |   |   |   | 010, ROMLESS H5 P                                    |
|   |   |   |   |   |   |   |   | 011, EPROM M6 R                                      |
|   |   |   |   |   |   |   |   | 100, ROM M6 R                                        |
|   |   |   |   |   |   |   |   | 101, OSDEPROM M6 R                                   |
|   |   |   |   |   |   |   |   | 110, ROM M6 P                                        |
|   |   |   |   |   |   |   |   | 111, Read Auto Gain Table for the device from EEPROM |

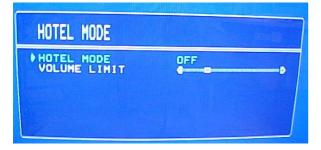
## 16. LANGUAGES

| GROUP 1    | GROUP 2   |
|------------|-----------|
| German     | English   |
| Italian    | Polish    |
| Dutch      | Slovak    |
| French     | Hungarian |
| Spanish    | Russian   |
| Portuguese | Bulgarian |
| Swedish    | Czech     |
| Norwegian  | Rumanian  |
| Finnish    | Croatian  |
| Dannish    |           |
| English    |           |
| Greek      |           |
| Turkish    |           |

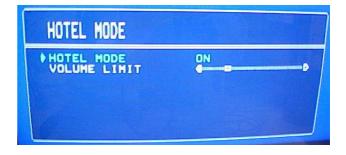
## **17. HOTEL MODE FUNCTIONS**

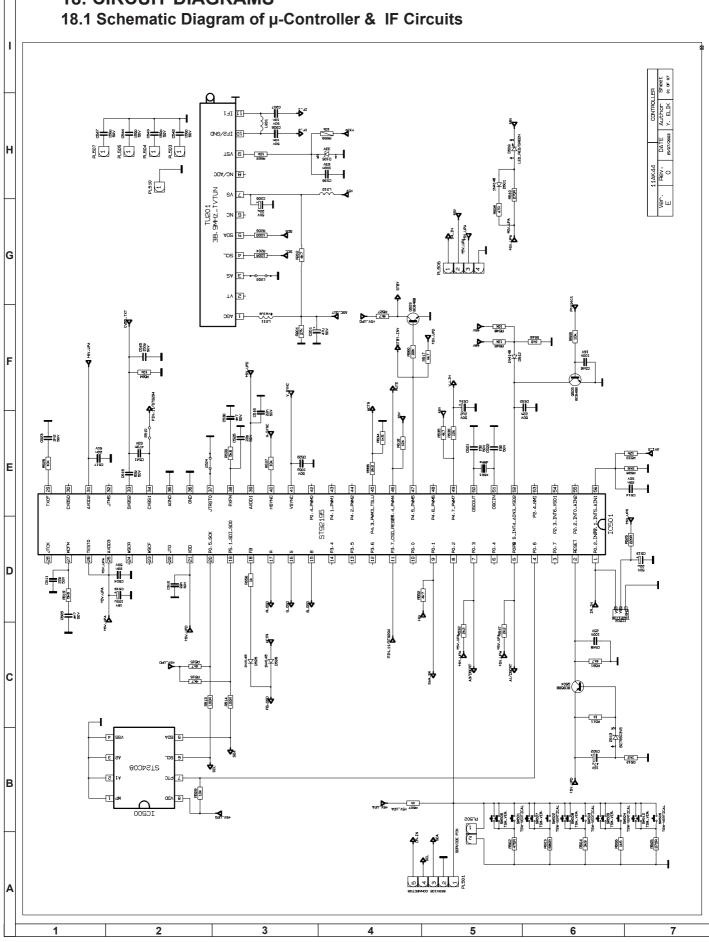
The following procedure details how to set up the Hotel Mode Functions.

#### 1. Description


The Hotel Mode deactivates Install and Program Features from the Main Features Menu. By other hand it can be reduced the Maximum Volume Level.

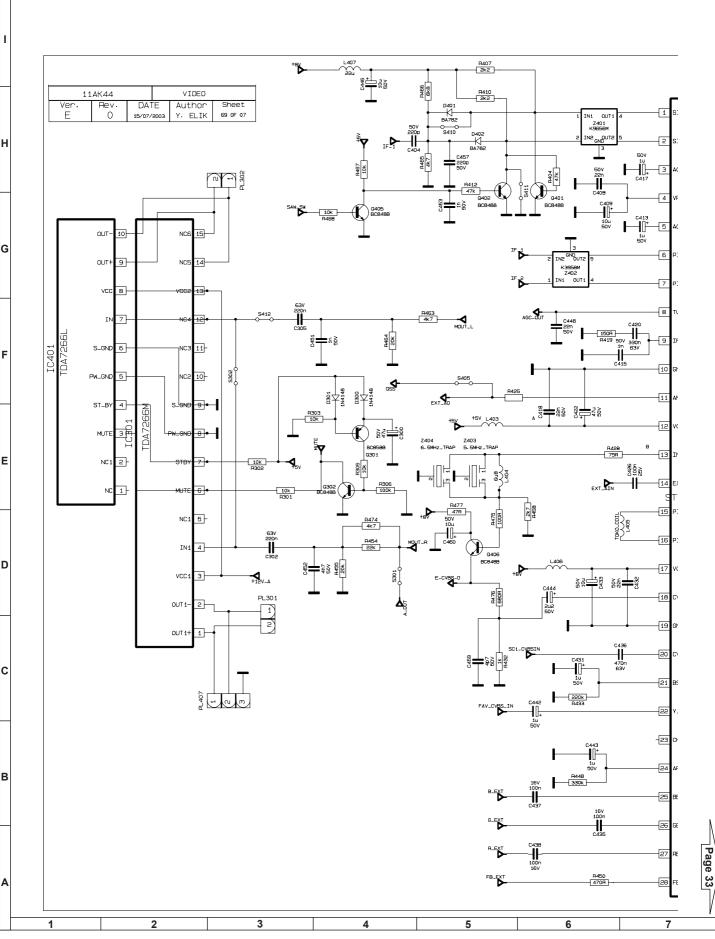
#### 2. Before Start


It is necessary to program the channel setting (tuning and sorting) because after that this features will be deactivated.

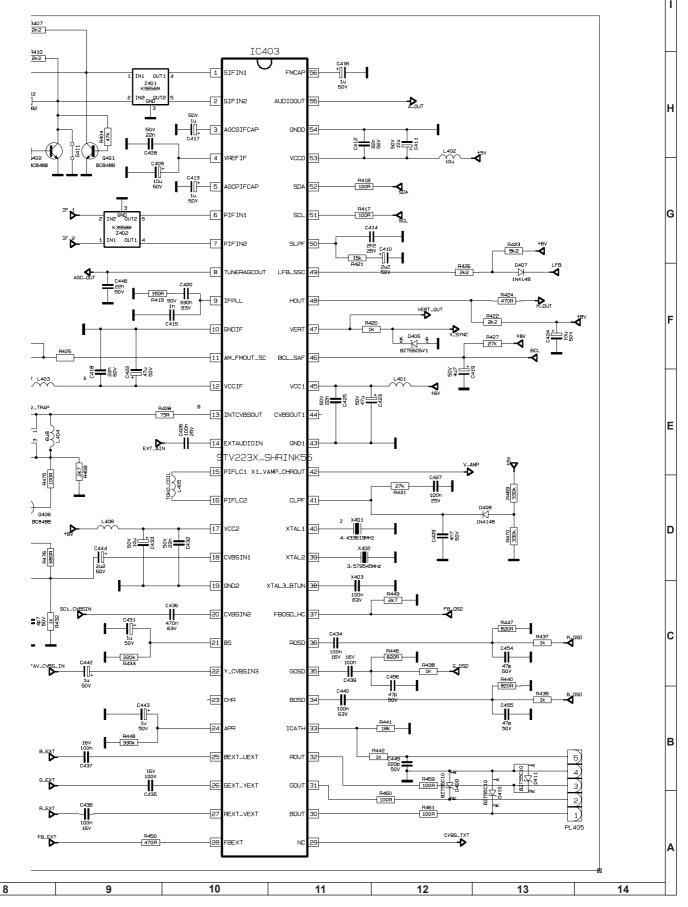

#### 3. Procedure

- 3.1 Enter the Service Mode. See Page 23.
- 3.2 Access to OP4 Register by CURSOR UP / DOWN.
- 3.3 Press 4 button on the remote control in order to activate the Hotel Mode.
- 3.4 Exit the Service Mode by the Menu button (30).
- 3.5 Enter again the Service Mode but with a new sequence of numbers: 1, 3, 2 and 5 consecutively. The following On Screen Display appears (figure on the left):




- 3.6 Activate the Hotel Mode as the above righ figure.
- 3.7 Proceed with the required Volume Limit.
- 3.8 Exit the Service Mode.



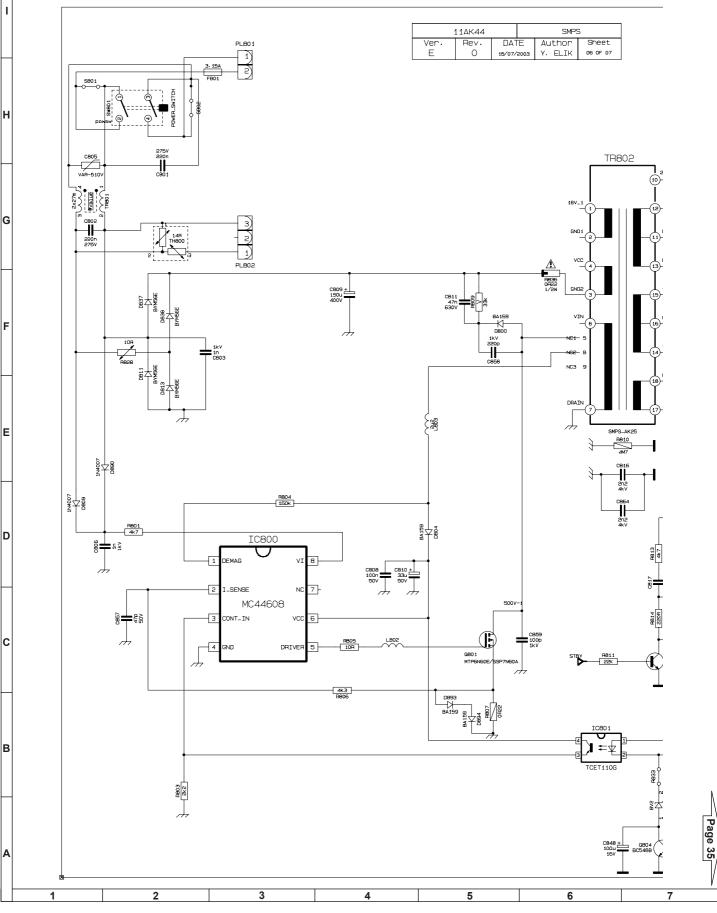


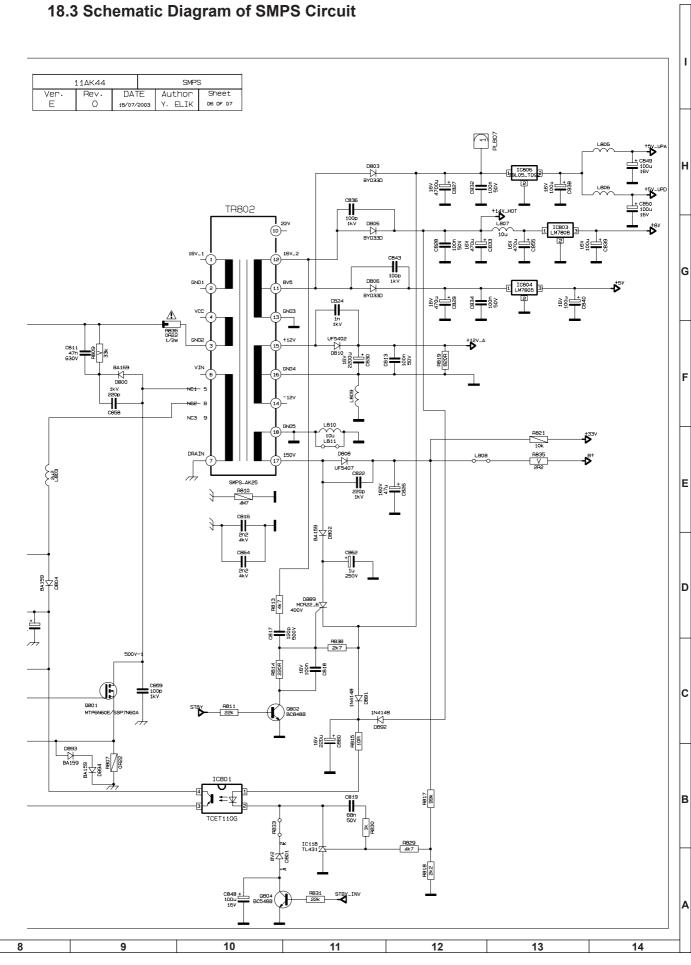

**18. CIRCUIT DIAGRAMS** 

18.2 Schematic Diagram of Video Circuit

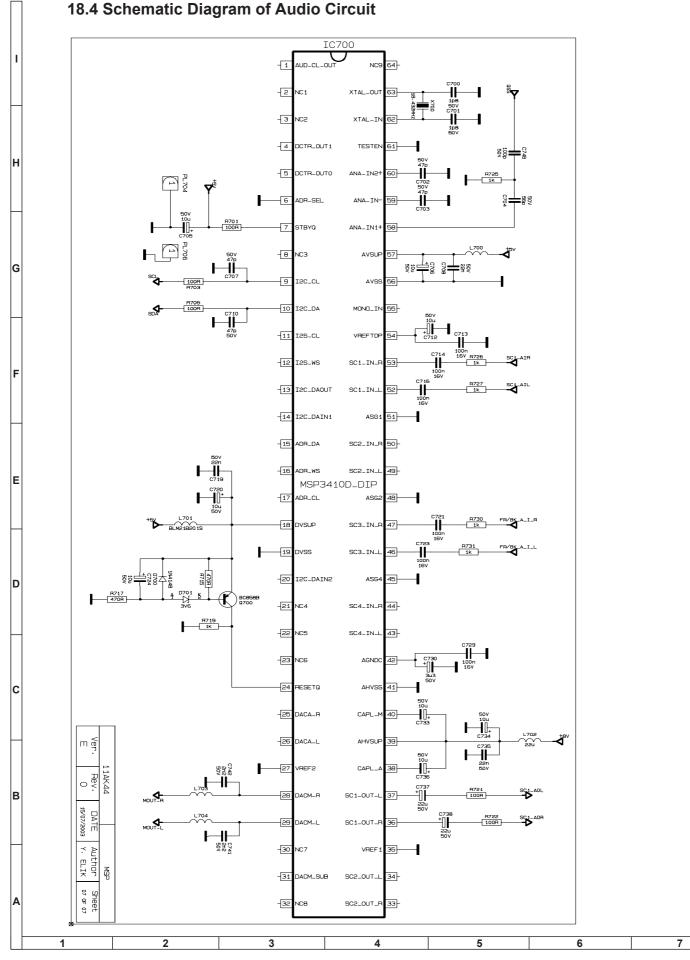


<sup>32</sup> 

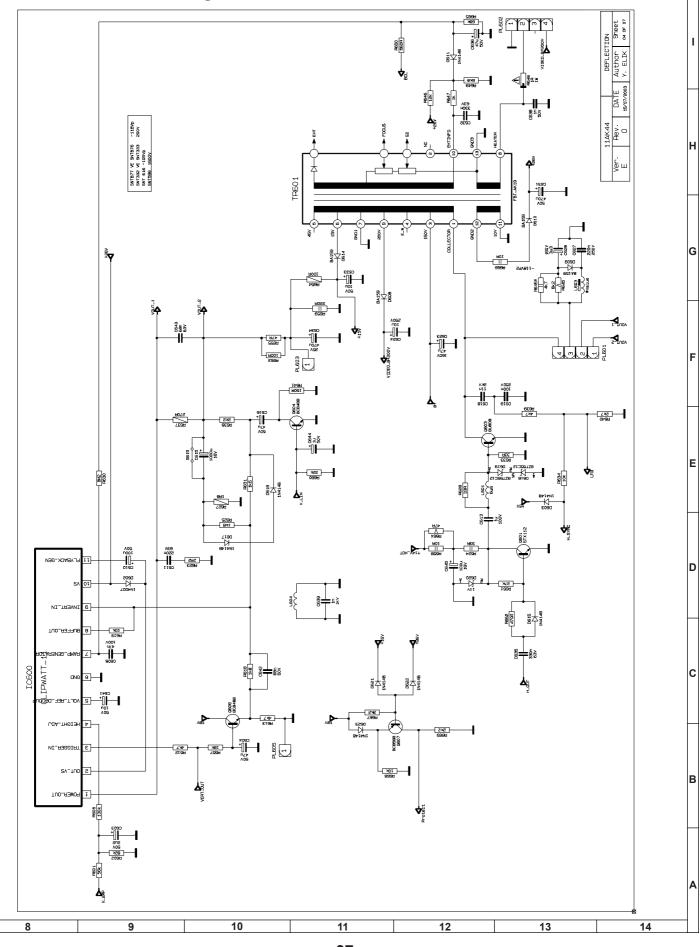




## 18.2 Schematic Diagram of Video Circuit

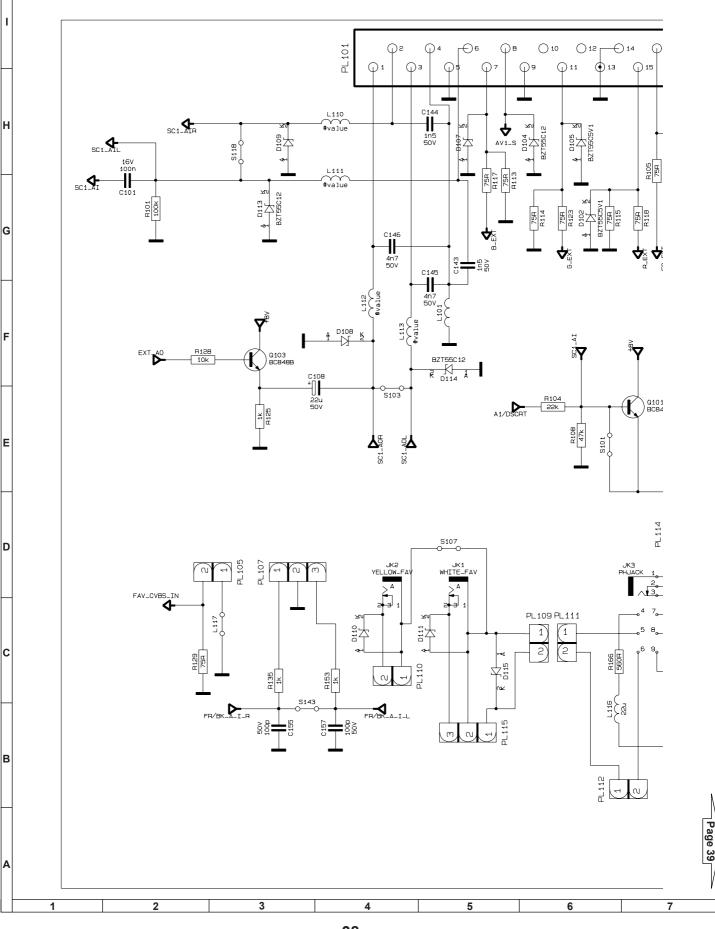
AK - 44 CH<u>ASSIS</u>


Page 32 □

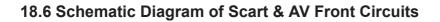
## **18.3 Schematic Diagram of SMPS Circuit**

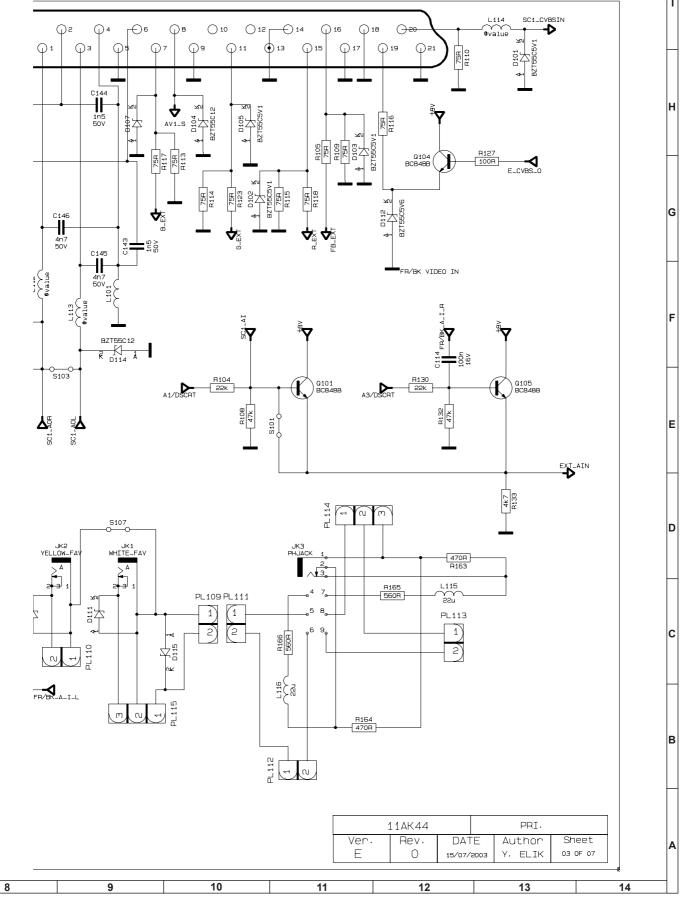






Page 34




AK - 44 CHASSIS




## 18.5 Schematic Diagram of Deflection Circuit



## 18.6 Schematic Diagram of Scart & AV Front Circuits





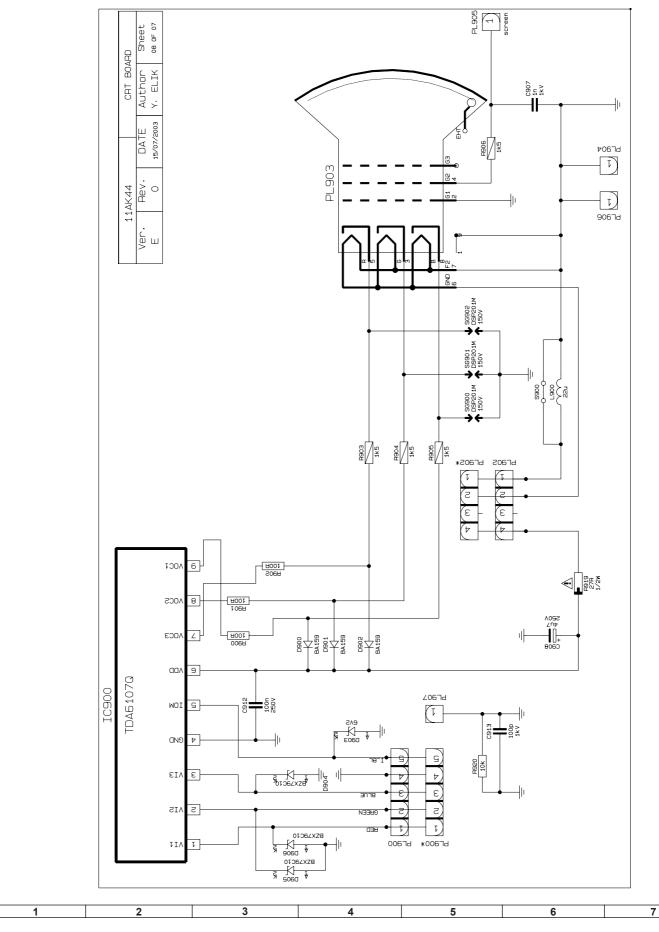
Page 38

I

н

G

F


Е

D

С

в

## 18.7 Schematic Diagram of CRT Socket Circuit



**40** 

## **19. HOW TO UPDATE THE TECHNICAL INFORMATION**

## 19.1 How to update the Technical Information appeared on this Service Manual (and relatives)

- 19.1.1. Web site: https://www.vestelservice.com
- 19.1.2. Select: Technical Support
- 19.1.3. Login: 101278
- 19.1.4. Password: SHPII278

By this access you can consult the latest schematic diagram or request the Parts Listing of a concrete Production Date / Serial Number.

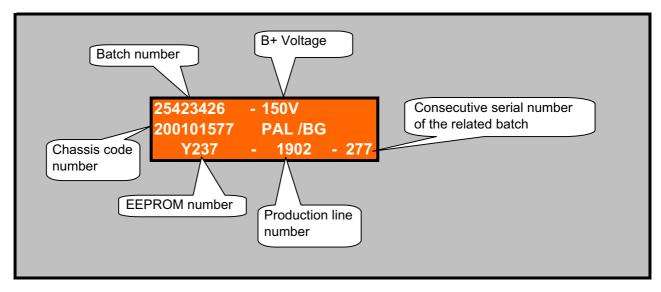
By this way it can be also consulted the issued Technical Reports (Service Bulletins).

It can be found a Label in every chassis with additional information, i.e. the used EEPROM. See below. On the next page are given details about the Code Bar Label.

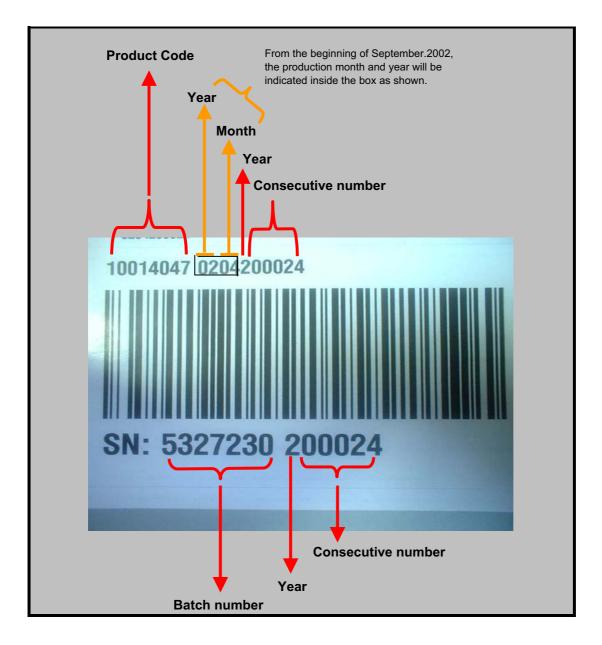
#### 19.2 NVM / EEPROM recorder

There is available the NVM / EEPROM recorder as spare part:

Part Reference: V20096887


Description: MD.ASY.PONYPROG

Dom. Price Code: AT


Exp. Price Code: BE

This EEPROM recorder uses the free software "Pony" available at http://www.lancos.com/ppwin95.html Note: In case of Windows platform it is recommended the PonyProg v1.17h version.

#### **19.3 Chassis Label Information**







| Droduct codo:       | It is the code that indicates Vestel internal identification number of the complete TV set.                                       |  |  |  |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Year :              | Production year in two digits, e.g.: 02 for 2002                                                                                  |  |  |  |
| Month :             | Production month in two digits; e.g.: 04 for April.                                                                               |  |  |  |
| Batch number :      | It is a Vestel number that is assigned by the Planning<br>Dept. according to the customer orders. (For internal<br>use by Vestel) |  |  |  |
|                     |                                                                                                                                   |  |  |  |
| Consecutive Number: | The number that indicates the sequence of the product related to the same batch number.                                           |  |  |  |

Notes:



No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission of the publisher.

**Technical information and Production:** 

**Vestel Electronik AS** 

Technical information re-issued:

SHARP ELECTRONICA ESPAÑA S.A. Service Manual Group Engineering Dept. Polígono Industrial Can Sant Joan 08190 Sant Cugat del Vallès Barcelona Spain PRINTED BY:

ON:

Think Ecology, please use

